Joanne E. Davis, Mandy Ludford-Menting, Rachel Koldej, David S. Ritchie
{"title":"改良的细胞微量紫增殖测定法可保留淋巴细胞的活力,并可进行光谱流式细胞仪分析。","authors":"Joanne E. Davis, Mandy Ludford-Menting, Rachel Koldej, David S. Ritchie","doi":"10.1002/cyto.a.24830","DOIUrl":null,"url":null,"abstract":"<p>In this study we describe three different methods for labeling T lymphocytes with cell trace violet (CTV), in order to track cell division in mouse and human cells, in both the in vitro and in vivo setting. We identified a modified method of CTV labeling that can be applied directly to either conventional or spectral flow cytometry, that maintained lymphocyte viability and function, yet minimized dye spill-over into other fluorochrome channels. Our optimized method for CTV labeling allowed us to identify up to eight cell divisions and the replication index for in vitro-stimulated mouse and human lymphocytes, and the co-expression of T-cell subset markers. Furthermore, the homeostatic trafficking, expansion and division of CTV-labeled congenic donor T cells could be detected using spectral cytometry, in an adoptive T-cell transfer mouse model. Our optimized CTV method can be applied to both in vitro and in vivo settings to examine the behavior and phenotype of activated T cells.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.a.24830","citationCount":"0","resultStr":"{\"title\":\"Modified cell trace violet proliferation assay preserves lymphocyte viability and allows spectral flow cytometry analysis\",\"authors\":\"Joanne E. Davis, Mandy Ludford-Menting, Rachel Koldej, David S. Ritchie\",\"doi\":\"10.1002/cyto.a.24830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study we describe three different methods for labeling T lymphocytes with cell trace violet (CTV), in order to track cell division in mouse and human cells, in both the in vitro and in vivo setting. We identified a modified method of CTV labeling that can be applied directly to either conventional or spectral flow cytometry, that maintained lymphocyte viability and function, yet minimized dye spill-over into other fluorochrome channels. Our optimized method for CTV labeling allowed us to identify up to eight cell divisions and the replication index for in vitro-stimulated mouse and human lymphocytes, and the co-expression of T-cell subset markers. Furthermore, the homeostatic trafficking, expansion and division of CTV-labeled congenic donor T cells could be detected using spectral cytometry, in an adoptive T-cell transfer mouse model. Our optimized CTV method can be applied to both in vitro and in vivo settings to examine the behavior and phenotype of activated T cells.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cyto.a.24830\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cyto.a.24830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
摘要
在本研究中,我们介绍了用细胞微量紫(CTV)标记 T 淋巴细胞的三种不同方法,以便在体外和体内环境中跟踪小鼠和人类细胞的细胞分裂。我们发现了一种经过改进的 CTV 标记方法,这种方法可直接应用于传统流式细胞仪或光谱流式细胞仪,既能保持淋巴细胞的活力和功能,又能最大限度地减少染料溢出到其他荧光通道。我们优化的 CTV 标记方法使我们能够识别体外刺激的小鼠和人类淋巴细胞多达八次的细胞分裂和复制指数,以及 T 细胞亚群标记物的共同表达。此外,在采用T细胞转移的小鼠模型中,使用光谱细胞仪可以检测到CTV标记的同源供体T细胞的同源贩运、扩增和分裂。我们优化的 CTV 方法可用于体外和体内环境,以检测活化 T 细胞的行为和表型。
In this study we describe three different methods for labeling T lymphocytes with cell trace violet (CTV), in order to track cell division in mouse and human cells, in both the in vitro and in vivo setting. We identified a modified method of CTV labeling that can be applied directly to either conventional or spectral flow cytometry, that maintained lymphocyte viability and function, yet minimized dye spill-over into other fluorochrome channels. Our optimized method for CTV labeling allowed us to identify up to eight cell divisions and the replication index for in vitro-stimulated mouse and human lymphocytes, and the co-expression of T-cell subset markers. Furthermore, the homeostatic trafficking, expansion and division of CTV-labeled congenic donor T cells could be detected using spectral cytometry, in an adoptive T-cell transfer mouse model. Our optimized CTV method can be applied to both in vitro and in vivo settings to examine the behavior and phenotype of activated T cells.