Amin Gholamhosseini , Mahdi Banaee , Amir Zeidi , Cristiana Roberta Multisanti , Caterina Faggio
{"title":"微塑料和醋酸铅对淡水虾(Caridina fossarum)的单独和综合影响:生化效应和生理反应","authors":"Amin Gholamhosseini , Mahdi Banaee , Amir Zeidi , Cristiana Roberta Multisanti , Caterina Faggio","doi":"10.1016/j.jconhyd.2024.104325","DOIUrl":null,"url":null,"abstract":"<div><p>Microplastics and heavy metals pollution is recognised as a major problem affecting aquatic ecosystems. For this reason, this study aims to assess the toxicity of different concentrations of polyethylene microplastics (PE-MPs) (0.0, 500, and 1000 μg L<sup>−1</sup>) with a mean size of 15–25 μm and lead acetate Pb(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>)<sub>2</sub> (0.0, 2.5, and 5 mg L<sup>−1</sup>), both individually and in combination, through the exposure of the freshwater grass shrimp, <em>Caridinia fossarum</em> for 15 days, focusing on microplastic interaction with co-occurring contaminants. After being exposed to both contaminants, either individually or in combination, significant alterations in numerous biochemical markers were observed. Specifically, exposure to lead acetate alone resulted in significant changes across ALP, AST, ALT, LDH, GGT, and BChE enzyme activity levels indicating hepatotoxicity and neurotoxicity. Also, Pb exposure led to alterations in total antioxidant capacity, MDA, total lipids, and glycogen contents, signalling the onset of oxidative stress. Exposure to PE-MPs alone led to changes in ALP, LDH, GGT, and BChE enzyme levels, and in MDA, total lipids, and glycogen samples' contents. Remarkably, the study observed increased bioaccumulation of lead acetate in samples treated with the combination, emphasizing the synergistic impact of PE-MPs on the toxicity of lead acetate. This synergy was also evident in AST and ALT enzyme activity levels and MDA contents. This underscores the necessity for measures to address both microplastic pollution and heavy metal contamination, taking into account the synergistic behaviour of MPs in the presence of concurrent contaminants.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0169772224000299/pdfft?md5=6631d93a7ba676dee4e90722da1316ef&pid=1-s2.0-S0169772224000299-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Individual and combined impact of microplastics and lead acetate on the freshwater shrimp (Caridina fossarum): Biochemical effects and physiological responses\",\"authors\":\"Amin Gholamhosseini , Mahdi Banaee , Amir Zeidi , Cristiana Roberta Multisanti , Caterina Faggio\",\"doi\":\"10.1016/j.jconhyd.2024.104325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microplastics and heavy metals pollution is recognised as a major problem affecting aquatic ecosystems. For this reason, this study aims to assess the toxicity of different concentrations of polyethylene microplastics (PE-MPs) (0.0, 500, and 1000 μg L<sup>−1</sup>) with a mean size of 15–25 μm and lead acetate Pb(C<sub>2</sub>H<sub>3</sub>O<sub>2</sub>)<sub>2</sub> (0.0, 2.5, and 5 mg L<sup>−1</sup>), both individually and in combination, through the exposure of the freshwater grass shrimp, <em>Caridinia fossarum</em> for 15 days, focusing on microplastic interaction with co-occurring contaminants. After being exposed to both contaminants, either individually or in combination, significant alterations in numerous biochemical markers were observed. Specifically, exposure to lead acetate alone resulted in significant changes across ALP, AST, ALT, LDH, GGT, and BChE enzyme activity levels indicating hepatotoxicity and neurotoxicity. Also, Pb exposure led to alterations in total antioxidant capacity, MDA, total lipids, and glycogen contents, signalling the onset of oxidative stress. Exposure to PE-MPs alone led to changes in ALP, LDH, GGT, and BChE enzyme levels, and in MDA, total lipids, and glycogen samples' contents. Remarkably, the study observed increased bioaccumulation of lead acetate in samples treated with the combination, emphasizing the synergistic impact of PE-MPs on the toxicity of lead acetate. This synergy was also evident in AST and ALT enzyme activity levels and MDA contents. This underscores the necessity for measures to address both microplastic pollution and heavy metal contamination, taking into account the synergistic behaviour of MPs in the presence of concurrent contaminants.</p></div>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0169772224000299/pdfft?md5=6631d93a7ba676dee4e90722da1316ef&pid=1-s2.0-S0169772224000299-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169772224000299\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772224000299","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Individual and combined impact of microplastics and lead acetate on the freshwater shrimp (Caridina fossarum): Biochemical effects and physiological responses
Microplastics and heavy metals pollution is recognised as a major problem affecting aquatic ecosystems. For this reason, this study aims to assess the toxicity of different concentrations of polyethylene microplastics (PE-MPs) (0.0, 500, and 1000 μg L−1) with a mean size of 15–25 μm and lead acetate Pb(C2H3O2)2 (0.0, 2.5, and 5 mg L−1), both individually and in combination, through the exposure of the freshwater grass shrimp, Caridinia fossarum for 15 days, focusing on microplastic interaction with co-occurring contaminants. After being exposed to both contaminants, either individually or in combination, significant alterations in numerous biochemical markers were observed. Specifically, exposure to lead acetate alone resulted in significant changes across ALP, AST, ALT, LDH, GGT, and BChE enzyme activity levels indicating hepatotoxicity and neurotoxicity. Also, Pb exposure led to alterations in total antioxidant capacity, MDA, total lipids, and glycogen contents, signalling the onset of oxidative stress. Exposure to PE-MPs alone led to changes in ALP, LDH, GGT, and BChE enzyme levels, and in MDA, total lipids, and glycogen samples' contents. Remarkably, the study observed increased bioaccumulation of lead acetate in samples treated with the combination, emphasizing the synergistic impact of PE-MPs on the toxicity of lead acetate. This synergy was also evident in AST and ALT enzyme activity levels and MDA contents. This underscores the necessity for measures to address both microplastic pollution and heavy metal contamination, taking into account the synergistic behaviour of MPs in the presence of concurrent contaminants.