Massinissa Grabi, Ahmed Chellil, Samir Lecheb, Hocine Grabi, Abdelkader Nour
{"title":"低速加载下的丝瓜络/环氧树脂复合材料冲击行为分析","authors":"Massinissa Grabi, Ahmed Chellil, Samir Lecheb, Hocine Grabi, Abdelkader Nour","doi":"10.1007/s10443-024-10209-0","DOIUrl":null,"url":null,"abstract":"<p>Luffa cylindrical (LC) has an exceptionally multipartite architecture, a hierarchical and light structure, and a low density. Such a structure is potentially suitable to replace conventional porous-type composites for low-energy absorption and material reinforcement applications. This paper presents an experimental study of the impact behavior of four different luffa/epoxy composites, named (A), (B), (C), and (D) subjected to low-velocity impact (LVI) at energies ranging from barely visible impact damage (BVID) to perforation (5,15, and 20J). Acoustic emission (AE), scanning electron microscopy (SEM), and digital image correlation (DIC) were introduced to the indentation test to offer additional information on damage mechanisms and on strain and displacement fields since the LVI test has a short duration and real-time damage monitoring is not always achievable. The results showed that the values of the peak force of laminates (A), (B), and (D) are relatively lower compared to laminates (C). In the case of perforation impact energy (20J), the Coefficients of Restitution (CoR) of composites (A), (B), and (D) are equal to 0, which indicates that the nature of the impact is completely plastic, except for composite (C) had a value of 0.11, and a lower degree of damage at all impact energies. Composites (C) exhibit the highest impact resistance, followed by composites (A), while composites (D) display the highest energy absorption, followed by composites (B). Multivariable statistical analysis of the AE signals identified four classes of damage: matrix cracking, fiber-matrix debonding, delamination, and fiber breakage. The damage modes found by AE are well presented and proven by SEM analysis. The luffa fiber-reinforced composite has better impact properties than other natural fiber-reinforced composites.</p>","PeriodicalId":468,"journal":{"name":"Applied Composite Materials","volume":"27 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact Behavior Analysis of Luffa/Epoxy Composites Under Low-Velocity Loading\",\"authors\":\"Massinissa Grabi, Ahmed Chellil, Samir Lecheb, Hocine Grabi, Abdelkader Nour\",\"doi\":\"10.1007/s10443-024-10209-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Luffa cylindrical (LC) has an exceptionally multipartite architecture, a hierarchical and light structure, and a low density. Such a structure is potentially suitable to replace conventional porous-type composites for low-energy absorption and material reinforcement applications. This paper presents an experimental study of the impact behavior of four different luffa/epoxy composites, named (A), (B), (C), and (D) subjected to low-velocity impact (LVI) at energies ranging from barely visible impact damage (BVID) to perforation (5,15, and 20J). Acoustic emission (AE), scanning electron microscopy (SEM), and digital image correlation (DIC) were introduced to the indentation test to offer additional information on damage mechanisms and on strain and displacement fields since the LVI test has a short duration and real-time damage monitoring is not always achievable. The results showed that the values of the peak force of laminates (A), (B), and (D) are relatively lower compared to laminates (C). In the case of perforation impact energy (20J), the Coefficients of Restitution (CoR) of composites (A), (B), and (D) are equal to 0, which indicates that the nature of the impact is completely plastic, except for composite (C) had a value of 0.11, and a lower degree of damage at all impact energies. Composites (C) exhibit the highest impact resistance, followed by composites (A), while composites (D) display the highest energy absorption, followed by composites (B). Multivariable statistical analysis of the AE signals identified four classes of damage: matrix cracking, fiber-matrix debonding, delamination, and fiber breakage. The damage modes found by AE are well presented and proven by SEM analysis. The luffa fiber-reinforced composite has better impact properties than other natural fiber-reinforced composites.</p>\",\"PeriodicalId\":468,\"journal\":{\"name\":\"Applied Composite Materials\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Composite Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s10443-024-10209-0\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Composite Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s10443-024-10209-0","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Impact Behavior Analysis of Luffa/Epoxy Composites Under Low-Velocity Loading
Luffa cylindrical (LC) has an exceptionally multipartite architecture, a hierarchical and light structure, and a low density. Such a structure is potentially suitable to replace conventional porous-type composites for low-energy absorption and material reinforcement applications. This paper presents an experimental study of the impact behavior of four different luffa/epoxy composites, named (A), (B), (C), and (D) subjected to low-velocity impact (LVI) at energies ranging from barely visible impact damage (BVID) to perforation (5,15, and 20J). Acoustic emission (AE), scanning electron microscopy (SEM), and digital image correlation (DIC) were introduced to the indentation test to offer additional information on damage mechanisms and on strain and displacement fields since the LVI test has a short duration and real-time damage monitoring is not always achievable. The results showed that the values of the peak force of laminates (A), (B), and (D) are relatively lower compared to laminates (C). In the case of perforation impact energy (20J), the Coefficients of Restitution (CoR) of composites (A), (B), and (D) are equal to 0, which indicates that the nature of the impact is completely plastic, except for composite (C) had a value of 0.11, and a lower degree of damage at all impact energies. Composites (C) exhibit the highest impact resistance, followed by composites (A), while composites (D) display the highest energy absorption, followed by composites (B). Multivariable statistical analysis of the AE signals identified four classes of damage: matrix cracking, fiber-matrix debonding, delamination, and fiber breakage. The damage modes found by AE are well presented and proven by SEM analysis. The luffa fiber-reinforced composite has better impact properties than other natural fiber-reinforced composites.
期刊介绍:
Applied Composite Materials is an international journal dedicated to the publication of original full-length papers, review articles and short communications of the highest quality that advance the development and application of engineering composite materials. Its articles identify problems that limit the performance and reliability of the composite material and composite part; and propose solutions that lead to innovation in design and the successful exploitation and commercialization of composite materials across the widest spectrum of engineering uses. The main focus is on the quantitative descriptions of material systems and processing routes.
Coverage includes management of time-dependent changes in microscopic and macroscopic structure and its exploitation from the material''s conception through to its eventual obsolescence.