Yu-hang Li, Fei-yu Chen, Li-ping Qin, Ke Chen, Yun-xiang You
{"title":"拖曳式和自航式水下主体模型产生内波的时频分析","authors":"Yu-hang Li, Fei-yu Chen, Li-ping Qin, Ke Chen, Yun-xiang You","doi":"10.1007/s42241-024-0093-8","DOIUrl":null,"url":null,"abstract":"<div><p>The spectrogram, based on a short-time Fourier transform, can visualize the time-dependent frequency spectrum of waves and is easy to compute. This time-frequency analysis method provides crucial information about waves generated by moving vessels and has been utilized to analyze Kelvin ship waves and internal waves. To further study the internal waves induced by a submerged body, an experiment is conducted for the towed and self-propelled SUBOFF model in a stratified fluid. The internal wave elevation signals are captured using electronic conductivity probes. Comparing with the calculation results of theoretical model, the high-frequency component of internal waves is identified. The high-frequency component has the exact same characteristics in both the towed and self-propelled model experiment and is consistent with the theoretical results for all Froude numbers. Therefore, this component is composed mainly of lee waves. Through spectral characteristics identification, a low-frequency component is discovered in the spectrogram in addition to the lee wave component. The intensity of the low-frequency component is tightly related to the vortex structure behind the submerged body. The vortex structure depends on the net momentum imparted by the submerged body. Therefore, this component is composed mainly of wake waves induced by the vortex structure.</p></div>","PeriodicalId":637,"journal":{"name":"Journal of Hydrodynamics","volume":"35 6","pages":"1191 - 1207"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time-frequency analysis of internal waves generated by a towed and self-propelled submerged body model\",\"authors\":\"Yu-hang Li, Fei-yu Chen, Li-ping Qin, Ke Chen, Yun-xiang You\",\"doi\":\"10.1007/s42241-024-0093-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The spectrogram, based on a short-time Fourier transform, can visualize the time-dependent frequency spectrum of waves and is easy to compute. This time-frequency analysis method provides crucial information about waves generated by moving vessels and has been utilized to analyze Kelvin ship waves and internal waves. To further study the internal waves induced by a submerged body, an experiment is conducted for the towed and self-propelled SUBOFF model in a stratified fluid. The internal wave elevation signals are captured using electronic conductivity probes. Comparing with the calculation results of theoretical model, the high-frequency component of internal waves is identified. The high-frequency component has the exact same characteristics in both the towed and self-propelled model experiment and is consistent with the theoretical results for all Froude numbers. Therefore, this component is composed mainly of lee waves. Through spectral characteristics identification, a low-frequency component is discovered in the spectrogram in addition to the lee wave component. The intensity of the low-frequency component is tightly related to the vortex structure behind the submerged body. The vortex structure depends on the net momentum imparted by the submerged body. Therefore, this component is composed mainly of wake waves induced by the vortex structure.</p></div>\",\"PeriodicalId\":637,\"journal\":{\"name\":\"Journal of Hydrodynamics\",\"volume\":\"35 6\",\"pages\":\"1191 - 1207\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42241-024-0093-8\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s42241-024-0093-8","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Time-frequency analysis of internal waves generated by a towed and self-propelled submerged body model
The spectrogram, based on a short-time Fourier transform, can visualize the time-dependent frequency spectrum of waves and is easy to compute. This time-frequency analysis method provides crucial information about waves generated by moving vessels and has been utilized to analyze Kelvin ship waves and internal waves. To further study the internal waves induced by a submerged body, an experiment is conducted for the towed and self-propelled SUBOFF model in a stratified fluid. The internal wave elevation signals are captured using electronic conductivity probes. Comparing with the calculation results of theoretical model, the high-frequency component of internal waves is identified. The high-frequency component has the exact same characteristics in both the towed and self-propelled model experiment and is consistent with the theoretical results for all Froude numbers. Therefore, this component is composed mainly of lee waves. Through spectral characteristics identification, a low-frequency component is discovered in the spectrogram in addition to the lee wave component. The intensity of the low-frequency component is tightly related to the vortex structure behind the submerged body. The vortex structure depends on the net momentum imparted by the submerged body. Therefore, this component is composed mainly of wake waves induced by the vortex structure.
期刊介绍:
Journal of Hydrodynamics is devoted to the publication of original theoretical, computational and experimental contributions to the all aspects of hydrodynamics. It covers advances in the naval architecture and ocean engineering, marine and ocean engineering, environmental engineering, water conservancy and hydropower engineering, energy exploration, chemical engineering, biological and biomedical engineering etc.