{"title":"高效船波模拟的全非线性方法","authors":"Kai-yuan Shi, Ren-chuan Zhu","doi":"10.1007/s42241-024-0092-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents an efficient time-domain method for simulating nonlinear ship waves. The proposed method, implemented in an earth-fixed coordinate system, integrates a compact boundary element domain within a high-order spectral layer, enabling accurate modeling of both near-field and far-field ship waves. An overset mesh method and an attention mechanism are employed to track the moving ship. The effectiveness of the method is validated through simulations of Wigley and Series 60 ships sailing at various speeds. The numerical results, including the nonlinear wave run-up at the ship bow, surface pressure distribution on the hull, and the ship resistance, agree well with experimental data and published numerical results, confirming that the method is capable of accurately simulating the nonlinear ship waves.</p></div>","PeriodicalId":637,"journal":{"name":"Journal of Hydrodynamics","volume":"35 6","pages":"1027 - 1040"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fully nonlinear approach for efficient ship-wave simulation\",\"authors\":\"Kai-yuan Shi, Ren-chuan Zhu\",\"doi\":\"10.1007/s42241-024-0092-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents an efficient time-domain method for simulating nonlinear ship waves. The proposed method, implemented in an earth-fixed coordinate system, integrates a compact boundary element domain within a high-order spectral layer, enabling accurate modeling of both near-field and far-field ship waves. An overset mesh method and an attention mechanism are employed to track the moving ship. The effectiveness of the method is validated through simulations of Wigley and Series 60 ships sailing at various speeds. The numerical results, including the nonlinear wave run-up at the ship bow, surface pressure distribution on the hull, and the ship resistance, agree well with experimental data and published numerical results, confirming that the method is capable of accurately simulating the nonlinear ship waves.</p></div>\",\"PeriodicalId\":637,\"journal\":{\"name\":\"Journal of Hydrodynamics\",\"volume\":\"35 6\",\"pages\":\"1027 - 1040\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Hydrodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42241-024-0092-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hydrodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s42241-024-0092-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文提出了一种模拟非线性船舶波的高效时域方法。所提出的方法在一个地球固定坐标系中实施,在一个高阶谱层中集成了一个紧凑的边界元域,从而实现了近场和远场船舶波的精确建模。采用超集网格法和注意力机制来跟踪移动的船舶。通过模拟以不同速度航行的 Wigley 和 Series 60 船舶,验证了该方法的有效性。数值结果,包括船首的非线性波浪上升、船体表面压力分布和船舶阻力,与实验数据和已发表的数值结果吻合良好,证实该方法能够准确模拟非线性船舶波浪。
A fully nonlinear approach for efficient ship-wave simulation
This paper presents an efficient time-domain method for simulating nonlinear ship waves. The proposed method, implemented in an earth-fixed coordinate system, integrates a compact boundary element domain within a high-order spectral layer, enabling accurate modeling of both near-field and far-field ship waves. An overset mesh method and an attention mechanism are employed to track the moving ship. The effectiveness of the method is validated through simulations of Wigley and Series 60 ships sailing at various speeds. The numerical results, including the nonlinear wave run-up at the ship bow, surface pressure distribution on the hull, and the ship resistance, agree well with experimental data and published numerical results, confirming that the method is capable of accurately simulating the nonlinear ship waves.
期刊介绍:
Journal of Hydrodynamics is devoted to the publication of original theoretical, computational and experimental contributions to the all aspects of hydrodynamics. It covers advances in the naval architecture and ocean engineering, marine and ocean engineering, environmental engineering, water conservancy and hydropower engineering, energy exploration, chemical engineering, biological and biomedical engineering etc.