{"title":"用于下一代隔热涂料的稀土钽酸盐","authors":"Lin Chen , Baihui Li , Jing Feng","doi":"10.1016/j.pmatsci.2024.101265","DOIUrl":null,"url":null,"abstract":"<div><p>Ceramic thermal barrier coatings (TBCs) have attracted significant research attention owing to their utility in the thermally insulating alloy components of gas turbines and aircraft engines that operate at high temperatures. Most TBCs comprise yttria-stabilized zirconia (YSZ); however, YSZ no longer meets the demands of modern TBC applications due to its low working temperature and high thermal conductivity. It is therefore imperative to develop a ferroelastic ceramic to replace YSZ in TBC applications. Ferroelastic rare-earth tantalates (RETaO<sub>4</sub>) possess many desirable properties, such as ferroelastic toughening, low thermal conductivity, high thermal expansion coefficients, and excellent comprehensive mechanical properties, and thus, they are promising next-generation TBCs, which are expected to operate at ultra-high temperatures (≥1600 °C). This review summarizes the thermophysical properties, CaO-MgO-AlO<sub>1.5</sub>-SiO<sub>2</sub> (CMAS) corrosion resistance, coatings, and shortcomings of three types of tantalate ceramics (RETaO<sub>4</sub>, RE<sub>3</sub>TaO<sub>7</sub>, and RETa<sub>3</sub>O<sub>9</sub>) and outlines the direction of future work in this field.</p></div>","PeriodicalId":411,"journal":{"name":"Progress in Materials Science","volume":"144 ","pages":"Article 101265"},"PeriodicalIF":33.6000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rare-earth tantalates for next-generation thermal barrier coatings\",\"authors\":\"Lin Chen , Baihui Li , Jing Feng\",\"doi\":\"10.1016/j.pmatsci.2024.101265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ceramic thermal barrier coatings (TBCs) have attracted significant research attention owing to their utility in the thermally insulating alloy components of gas turbines and aircraft engines that operate at high temperatures. Most TBCs comprise yttria-stabilized zirconia (YSZ); however, YSZ no longer meets the demands of modern TBC applications due to its low working temperature and high thermal conductivity. It is therefore imperative to develop a ferroelastic ceramic to replace YSZ in TBC applications. Ferroelastic rare-earth tantalates (RETaO<sub>4</sub>) possess many desirable properties, such as ferroelastic toughening, low thermal conductivity, high thermal expansion coefficients, and excellent comprehensive mechanical properties, and thus, they are promising next-generation TBCs, which are expected to operate at ultra-high temperatures (≥1600 °C). This review summarizes the thermophysical properties, CaO-MgO-AlO<sub>1.5</sub>-SiO<sub>2</sub> (CMAS) corrosion resistance, coatings, and shortcomings of three types of tantalate ceramics (RETaO<sub>4</sub>, RE<sub>3</sub>TaO<sub>7</sub>, and RETa<sub>3</sub>O<sub>9</sub>) and outlines the direction of future work in this field.</p></div>\",\"PeriodicalId\":411,\"journal\":{\"name\":\"Progress in Materials Science\",\"volume\":\"144 \",\"pages\":\"Article 101265\"},\"PeriodicalIF\":33.6000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0079642524000343\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079642524000343","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Rare-earth tantalates for next-generation thermal barrier coatings
Ceramic thermal barrier coatings (TBCs) have attracted significant research attention owing to their utility in the thermally insulating alloy components of gas turbines and aircraft engines that operate at high temperatures. Most TBCs comprise yttria-stabilized zirconia (YSZ); however, YSZ no longer meets the demands of modern TBC applications due to its low working temperature and high thermal conductivity. It is therefore imperative to develop a ferroelastic ceramic to replace YSZ in TBC applications. Ferroelastic rare-earth tantalates (RETaO4) possess many desirable properties, such as ferroelastic toughening, low thermal conductivity, high thermal expansion coefficients, and excellent comprehensive mechanical properties, and thus, they are promising next-generation TBCs, which are expected to operate at ultra-high temperatures (≥1600 °C). This review summarizes the thermophysical properties, CaO-MgO-AlO1.5-SiO2 (CMAS) corrosion resistance, coatings, and shortcomings of three types of tantalate ceramics (RETaO4, RE3TaO7, and RETa3O9) and outlines the direction of future work in this field.
期刊介绍:
Progress in Materials Science is a journal that publishes authoritative and critical reviews of recent advances in the science of materials. The focus of the journal is on the fundamental aspects of materials science, particularly those concerning microstructure and nanostructure and their relationship to properties. Emphasis is also placed on the thermodynamics, kinetics, mechanisms, and modeling of processes within materials, as well as the understanding of material properties in engineering and other applications.
The journal welcomes reviews from authors who are active leaders in the field of materials science and have a strong scientific track record. Materials of interest include metallic, ceramic, polymeric, biological, medical, and composite materials in all forms.
Manuscripts submitted to Progress in Materials Science are generally longer than those found in other research journals. While the focus is on invited reviews, interested authors may submit a proposal for consideration. Non-invited manuscripts are required to be preceded by the submission of a proposal. Authors publishing in Progress in Materials Science have the option to publish their research via subscription or open access. Open access publication requires the author or research funder to meet a publication fee (APC).
Abstracting and indexing services for Progress in Materials Science include Current Contents, Science Citation Index Expanded, Materials Science Citation Index, Chemical Abstracts, Engineering Index, INSPEC, and Scopus.