{"title":"氧还原反应铂催化剂形态控制的最新进展","authors":"Shun Chen, Yanru Liu, Xiaogang Fu, Wanglei Wang","doi":"10.1007/s11708-024-0929-5","DOIUrl":null,"url":null,"abstract":"<div><p>Exploring advanced platinum (Pt)-based electrocatalysts is vital for the widespread implementation of proton exchange membrane fuel cells (PEMFCs). Morphology control represents an effective strategy to optimize the behavior of Pt catalysts. In this work, an attempt is made to comprehensively review the effect of morphology control on the catalytic behavior of catalysts in the oxygen reduction reaction (ORR). First, the fundamental physicochemical changes behind morphology control, including exposing more active sites, generating appropriate lattice strains, and forming different crystalline surfaces, are highlighted. Then, recently developed strategies for tuning the morphologies of electrocatalysts, including core-shell structures, hollow structures, nanocages, nanowires, and nanosheets, are comprehensively summarized. Finally, an outlook on the future development of morphology control of Pt catalysts is presented, including rational design strategies, advanced <i>in situ</i> characterization techniques, novel artificial intelligence, and mechanical learning. This work is intended to provide valuable insights into designing the morphology and technological innovation of efficient redox electrocatalysts in fuel cells.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 3","pages":"330 - 355"},"PeriodicalIF":3.1000,"publicationDate":"2024-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances in morphology control of platinum catalysts toward oxygen reduction reaction\",\"authors\":\"Shun Chen, Yanru Liu, Xiaogang Fu, Wanglei Wang\",\"doi\":\"10.1007/s11708-024-0929-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Exploring advanced platinum (Pt)-based electrocatalysts is vital for the widespread implementation of proton exchange membrane fuel cells (PEMFCs). Morphology control represents an effective strategy to optimize the behavior of Pt catalysts. In this work, an attempt is made to comprehensively review the effect of morphology control on the catalytic behavior of catalysts in the oxygen reduction reaction (ORR). First, the fundamental physicochemical changes behind morphology control, including exposing more active sites, generating appropriate lattice strains, and forming different crystalline surfaces, are highlighted. Then, recently developed strategies for tuning the morphologies of electrocatalysts, including core-shell structures, hollow structures, nanocages, nanowires, and nanosheets, are comprehensively summarized. Finally, an outlook on the future development of morphology control of Pt catalysts is presented, including rational design strategies, advanced <i>in situ</i> characterization techniques, novel artificial intelligence, and mechanical learning. This work is intended to provide valuable insights into designing the morphology and technological innovation of efficient redox electrocatalysts in fuel cells.</p></div>\",\"PeriodicalId\":570,\"journal\":{\"name\":\"Frontiers in Energy\",\"volume\":\"18 3\",\"pages\":\"330 - 355\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11708-024-0929-5\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-024-0929-5","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Recent advances in morphology control of platinum catalysts toward oxygen reduction reaction
Exploring advanced platinum (Pt)-based electrocatalysts is vital for the widespread implementation of proton exchange membrane fuel cells (PEMFCs). Morphology control represents an effective strategy to optimize the behavior of Pt catalysts. In this work, an attempt is made to comprehensively review the effect of morphology control on the catalytic behavior of catalysts in the oxygen reduction reaction (ORR). First, the fundamental physicochemical changes behind morphology control, including exposing more active sites, generating appropriate lattice strains, and forming different crystalline surfaces, are highlighted. Then, recently developed strategies for tuning the morphologies of electrocatalysts, including core-shell structures, hollow structures, nanocages, nanowires, and nanosheets, are comprehensively summarized. Finally, an outlook on the future development of morphology control of Pt catalysts is presented, including rational design strategies, advanced in situ characterization techniques, novel artificial intelligence, and mechanical learning. This work is intended to provide valuable insights into designing the morphology and technological innovation of efficient redox electrocatalysts in fuel cells.
期刊介绍:
Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy.
Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues.
Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research.
High-quality papers are solicited in, but are not limited to the following areas:
-Fundamental energy science
-Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency
-Energy and the environment, including pollution control, energy efficiency and climate change
-Energy economics, strategy and policy
-Emerging energy issue