{"title":"结合实验分析的机器学习模型用于预测含有不同工业副产品的混凝土的抗压强度","authors":"Lakshmana Rao Kalabarige, Jayaprakash Sridhar, Sivaramakrishnan Subbaram, Palaniappan Prasath, Ravindran Gobinath","doi":"10.1155/2024/7844854","DOIUrl":null,"url":null,"abstract":"This study aimed to develop accurate models for estimating the compressive strength (CS) of concrete using a combination of experimental testing and different machine learning (ML) approaches: baseline regression models, boosting model, bagging model, tree-based ensemble models, and average voting regression (VR). The research utilized an extensive experimental dataset with 14 input variables, including cement, limestone powder, fly ash, granulated glass blast furnace slag, silica fume, rice husk ash, marble powder, brick powder, coarse aggregate, fine aggregate, recycled coarse aggregate, water, superplasticizer, and voids in mineral aggregate. To evaluate the performance of each ML model, five metrics were used: mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), coefficient of determination (<i>R</i><sup>2</sup>-score), and relative root mean squared error (RRMSE). The comparative analysis revealed that the VR model exhibited the highest effectiveness, displaying a strong correlation between actual and estimated outcomes. The boosting, bagging, and VR models achieved impressive <i>R</i><sup>2</sup>-scores in the range of 86.69%–92.43%, with MAE ranging from 3.87 to 4.87, MSE from 21.74 to 38.37, RMSE from 4.66 to 4.87, and RRMSE between 8% and 11%. Particularly, the VR model outperformed all other models with the highest <i>R</i><sup>2</sup>-score (92.43%) and the lowest error rate. The developed models demonstrated excellent generalization and prediction capabilities, providing valuable tools for practitioners, researchers, and designers to efficiently evaluate the CS of concrete. By mitigating environmental vulnerabilities and associated impacts, this research can significantly contribute to enhancing the quality and sustainability of concrete construction practices.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":"188 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Modeling Integrating Experimental Analysis for Predicting Compressive Strength of Concrete Containing Different Industrial Byproducts\",\"authors\":\"Lakshmana Rao Kalabarige, Jayaprakash Sridhar, Sivaramakrishnan Subbaram, Palaniappan Prasath, Ravindran Gobinath\",\"doi\":\"10.1155/2024/7844854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to develop accurate models for estimating the compressive strength (CS) of concrete using a combination of experimental testing and different machine learning (ML) approaches: baseline regression models, boosting model, bagging model, tree-based ensemble models, and average voting regression (VR). The research utilized an extensive experimental dataset with 14 input variables, including cement, limestone powder, fly ash, granulated glass blast furnace slag, silica fume, rice husk ash, marble powder, brick powder, coarse aggregate, fine aggregate, recycled coarse aggregate, water, superplasticizer, and voids in mineral aggregate. To evaluate the performance of each ML model, five metrics were used: mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), coefficient of determination (<i>R</i><sup>2</sup>-score), and relative root mean squared error (RRMSE). The comparative analysis revealed that the VR model exhibited the highest effectiveness, displaying a strong correlation between actual and estimated outcomes. The boosting, bagging, and VR models achieved impressive <i>R</i><sup>2</sup>-scores in the range of 86.69%–92.43%, with MAE ranging from 3.87 to 4.87, MSE from 21.74 to 38.37, RMSE from 4.66 to 4.87, and RRMSE between 8% and 11%. Particularly, the VR model outperformed all other models with the highest <i>R</i><sup>2</sup>-score (92.43%) and the lowest error rate. The developed models demonstrated excellent generalization and prediction capabilities, providing valuable tools for practitioners, researchers, and designers to efficiently evaluate the CS of concrete. By mitigating environmental vulnerabilities and associated impacts, this research can significantly contribute to enhancing the quality and sustainability of concrete construction practices.\",\"PeriodicalId\":7242,\"journal\":{\"name\":\"Advances in Civil Engineering\",\"volume\":\"188 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/7844854\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/7844854","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Machine Learning Modeling Integrating Experimental Analysis for Predicting Compressive Strength of Concrete Containing Different Industrial Byproducts
This study aimed to develop accurate models for estimating the compressive strength (CS) of concrete using a combination of experimental testing and different machine learning (ML) approaches: baseline regression models, boosting model, bagging model, tree-based ensemble models, and average voting regression (VR). The research utilized an extensive experimental dataset with 14 input variables, including cement, limestone powder, fly ash, granulated glass blast furnace slag, silica fume, rice husk ash, marble powder, brick powder, coarse aggregate, fine aggregate, recycled coarse aggregate, water, superplasticizer, and voids in mineral aggregate. To evaluate the performance of each ML model, five metrics were used: mean absolute error (MAE), mean squared error (MSE), root mean squared error (RMSE), coefficient of determination (R2-score), and relative root mean squared error (RRMSE). The comparative analysis revealed that the VR model exhibited the highest effectiveness, displaying a strong correlation between actual and estimated outcomes. The boosting, bagging, and VR models achieved impressive R2-scores in the range of 86.69%–92.43%, with MAE ranging from 3.87 to 4.87, MSE from 21.74 to 38.37, RMSE from 4.66 to 4.87, and RRMSE between 8% and 11%. Particularly, the VR model outperformed all other models with the highest R2-score (92.43%) and the lowest error rate. The developed models demonstrated excellent generalization and prediction capabilities, providing valuable tools for practitioners, researchers, and designers to efficiently evaluate the CS of concrete. By mitigating environmental vulnerabilities and associated impacts, this research can significantly contribute to enhancing the quality and sustainability of concrete construction practices.
期刊介绍:
Advances in Civil Engineering publishes papers in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies. Contributions from academia and from industry are equally encouraged.
Subject areas include (but are by no means limited to):
-Structural mechanics and engineering-
Structural design and construction management-
Structural analysis and computational mechanics-
Construction technology and implementation-
Construction materials design and engineering-
Highway and transport engineering-
Bridge and tunnel engineering-
Municipal and urban engineering-
Coastal, harbour and offshore engineering--
Geotechnical and earthquake engineering
Engineering for water, waste, energy, and environmental applications-
Hydraulic engineering and fluid mechanics-
Surveying, monitoring, and control systems in construction-
Health and safety in a civil engineering setting.
Advances in Civil Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.