{"title":"新世界叶鼻蝠(Phyllostomidae)食性多样化的基因组和功能洞察","authors":"Yi‐Ran Xu, Ying‐Can Li, Hui‐Qiao Hu, Heng‐Wu Jiao, Hua‐Bin Zhao","doi":"10.1111/jse.13059","DOIUrl":null,"url":null,"abstract":"The most significant driver of adaptive radiation in the New World leaf‐nosed bats (Phyllostomidae) is their remarkably diverse feeding habits, yet there remains a notable scarcity of studies addressing the genetic underpinnings of dietary diversification in this family. In this study, we have assembled a new genome for a representative species of phyllostomid bat, the fringe‐lipped bat (<jats:italic>Trachops cirrhosis</jats:italic>), and integrated it with eight published phyllostomid genomes, along with an additional 10 genomes of other bat species. Comparative genomic analysis across 10 200 orthologus genes has unveiled that those genes subject to divergent selection within the Phyllostomidae clade are notably enriched in metabolism‐related pathways. Furthermore, we identified molecular signatures of divergent selection in the bitter receptor gene <jats:italic>Tas2r1</jats:italic>, as well as 14 genes involved in digesting key nutrients such as carbohydrates, proteins, and fats. In addition, our cell‐based functional assays conducted on <jats:italic>Tas2r1</jats:italic> showed a broader spectrum of perception for bitter compounds in phyllostomids compared to nonphyllostomid bats, suggesting functional diversification of bitter taste in Phyllostomidae. Together, our genomic and functional analyses lead us to propose that divergent selection of genes associated with taste, digestion and absorption, and metabolism assumes a pivotal role in steering the extreme dietary diversification in Phyllostomidae. This study not only illuminates the genetic mechanisms underlying dietary adaptations in Phyllostomidae bats but also enhances our understanding of their extraordinary adaptive radiation.","PeriodicalId":17087,"journal":{"name":"Journal of Systematics and Evolution","volume":"8 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genomic and functional insights into dietary diversification in New World leaf‐nosed bats (Phyllostomidae)\",\"authors\":\"Yi‐Ran Xu, Ying‐Can Li, Hui‐Qiao Hu, Heng‐Wu Jiao, Hua‐Bin Zhao\",\"doi\":\"10.1111/jse.13059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The most significant driver of adaptive radiation in the New World leaf‐nosed bats (Phyllostomidae) is their remarkably diverse feeding habits, yet there remains a notable scarcity of studies addressing the genetic underpinnings of dietary diversification in this family. In this study, we have assembled a new genome for a representative species of phyllostomid bat, the fringe‐lipped bat (<jats:italic>Trachops cirrhosis</jats:italic>), and integrated it with eight published phyllostomid genomes, along with an additional 10 genomes of other bat species. Comparative genomic analysis across 10 200 orthologus genes has unveiled that those genes subject to divergent selection within the Phyllostomidae clade are notably enriched in metabolism‐related pathways. Furthermore, we identified molecular signatures of divergent selection in the bitter receptor gene <jats:italic>Tas2r1</jats:italic>, as well as 14 genes involved in digesting key nutrients such as carbohydrates, proteins, and fats. In addition, our cell‐based functional assays conducted on <jats:italic>Tas2r1</jats:italic> showed a broader spectrum of perception for bitter compounds in phyllostomids compared to nonphyllostomid bats, suggesting functional diversification of bitter taste in Phyllostomidae. Together, our genomic and functional analyses lead us to propose that divergent selection of genes associated with taste, digestion and absorption, and metabolism assumes a pivotal role in steering the extreme dietary diversification in Phyllostomidae. This study not only illuminates the genetic mechanisms underlying dietary adaptations in Phyllostomidae bats but also enhances our understanding of their extraordinary adaptive radiation.\",\"PeriodicalId\":17087,\"journal\":{\"name\":\"Journal of Systematics and Evolution\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Systematics and Evolution\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/jse.13059\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Systematics and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/jse.13059","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Genomic and functional insights into dietary diversification in New World leaf‐nosed bats (Phyllostomidae)
The most significant driver of adaptive radiation in the New World leaf‐nosed bats (Phyllostomidae) is their remarkably diverse feeding habits, yet there remains a notable scarcity of studies addressing the genetic underpinnings of dietary diversification in this family. In this study, we have assembled a new genome for a representative species of phyllostomid bat, the fringe‐lipped bat (Trachops cirrhosis), and integrated it with eight published phyllostomid genomes, along with an additional 10 genomes of other bat species. Comparative genomic analysis across 10 200 orthologus genes has unveiled that those genes subject to divergent selection within the Phyllostomidae clade are notably enriched in metabolism‐related pathways. Furthermore, we identified molecular signatures of divergent selection in the bitter receptor gene Tas2r1, as well as 14 genes involved in digesting key nutrients such as carbohydrates, proteins, and fats. In addition, our cell‐based functional assays conducted on Tas2r1 showed a broader spectrum of perception for bitter compounds in phyllostomids compared to nonphyllostomid bats, suggesting functional diversification of bitter taste in Phyllostomidae. Together, our genomic and functional analyses lead us to propose that divergent selection of genes associated with taste, digestion and absorption, and metabolism assumes a pivotal role in steering the extreme dietary diversification in Phyllostomidae. This study not only illuminates the genetic mechanisms underlying dietary adaptations in Phyllostomidae bats but also enhances our understanding of their extraordinary adaptive radiation.
期刊介绍:
Journal of Systematics and Evolution (JSE, since 2008; formerly Acta Phytotaxonomica Sinica) is a plant-based international journal newly dedicated to the description and understanding of the biological diversity. It covers: description of new taxa, monographic revision, phylogenetics, molecular evolution and genome evolution, evolutionary developmental biology, evolutionary ecology, population biology, conservation biology, biogeography, paleobiology, evolutionary theories, and related subjects.