{"title":"菲律宾阿波礁和图巴塔哈礁的水下礁石特征揭示了上一次冰期的古海平面历史","authors":"","doi":"10.1007/s00367-024-00764-7","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The morphology of coral reefs provides an effective benchmark of past sea levels because of their limited vertical range of formation and good geologic preservation. In this study, we analyze the seafloor morphology around two atolls in the Philippines: Tubbataha Reef, in Palawan, and Apo Reef, in Occidental Mindoro. High-resolution multibeam bathymetry to a depth of 200 m reveals seafloor features including reef ridges and staircase-like terraces and scarps. Depth profiles across the reefs show terraces formed within six and seven depth ranges in Tubbataha Reef and in Apo Reef, respectively. These were further observed through a remotely operated vehicle. The terraces and scarps are interpreted as backstepping reefs that were drowned during an overall rise in sea level from the Last Glacial Maximum (LGM). Terraces are used as indicators of paleo sea level and the separation between terraces as the magnitude of sea-level rises coeval with meltwater pulse events during the last deglaciation. The pattern for both Apo and Tubbataha reefs indicates subsidence, consistent with the absence of Holocene emergent features and their atoll morphologies. Subsidence of up to 17 m since the LGM in Apo Reef is mainly attributed to the downbowing of the crust toward Manila Trench. In Tubbataha Reef, subsidence of up to 14 m is attributed to the continuous cooling of the volcanic crust underlying the atoll. These can be used to fill gaps in the tectonic history of the study sites from the last deglaciation.</p>","PeriodicalId":12500,"journal":{"name":"Geo-Marine Letters","volume":"10 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Submerged reef features in Apo and Tubbataha Reefs, Philippines, revealed paleo sea-level history during the last deglaciation\",\"authors\":\"\",\"doi\":\"10.1007/s00367-024-00764-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>The morphology of coral reefs provides an effective benchmark of past sea levels because of their limited vertical range of formation and good geologic preservation. In this study, we analyze the seafloor morphology around two atolls in the Philippines: Tubbataha Reef, in Palawan, and Apo Reef, in Occidental Mindoro. High-resolution multibeam bathymetry to a depth of 200 m reveals seafloor features including reef ridges and staircase-like terraces and scarps. Depth profiles across the reefs show terraces formed within six and seven depth ranges in Tubbataha Reef and in Apo Reef, respectively. These were further observed through a remotely operated vehicle. The terraces and scarps are interpreted as backstepping reefs that were drowned during an overall rise in sea level from the Last Glacial Maximum (LGM). Terraces are used as indicators of paleo sea level and the separation between terraces as the magnitude of sea-level rises coeval with meltwater pulse events during the last deglaciation. The pattern for both Apo and Tubbataha reefs indicates subsidence, consistent with the absence of Holocene emergent features and their atoll morphologies. Subsidence of up to 17 m since the LGM in Apo Reef is mainly attributed to the downbowing of the crust toward Manila Trench. In Tubbataha Reef, subsidence of up to 14 m is attributed to the continuous cooling of the volcanic crust underlying the atoll. These can be used to fill gaps in the tectonic history of the study sites from the last deglaciation.</p>\",\"PeriodicalId\":12500,\"journal\":{\"name\":\"Geo-Marine Letters\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geo-Marine Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00367-024-00764-7\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geo-Marine Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00367-024-00764-7","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Submerged reef features in Apo and Tubbataha Reefs, Philippines, revealed paleo sea-level history during the last deglaciation
Abstract
The morphology of coral reefs provides an effective benchmark of past sea levels because of their limited vertical range of formation and good geologic preservation. In this study, we analyze the seafloor morphology around two atolls in the Philippines: Tubbataha Reef, in Palawan, and Apo Reef, in Occidental Mindoro. High-resolution multibeam bathymetry to a depth of 200 m reveals seafloor features including reef ridges and staircase-like terraces and scarps. Depth profiles across the reefs show terraces formed within six and seven depth ranges in Tubbataha Reef and in Apo Reef, respectively. These were further observed through a remotely operated vehicle. The terraces and scarps are interpreted as backstepping reefs that were drowned during an overall rise in sea level from the Last Glacial Maximum (LGM). Terraces are used as indicators of paleo sea level and the separation between terraces as the magnitude of sea-level rises coeval with meltwater pulse events during the last deglaciation. The pattern for both Apo and Tubbataha reefs indicates subsidence, consistent with the absence of Holocene emergent features and their atoll morphologies. Subsidence of up to 17 m since the LGM in Apo Reef is mainly attributed to the downbowing of the crust toward Manila Trench. In Tubbataha Reef, subsidence of up to 14 m is attributed to the continuous cooling of the volcanic crust underlying the atoll. These can be used to fill gaps in the tectonic history of the study sites from the last deglaciation.
期刊介绍:
Geo-Marine Letters is an international peer-reviewed journal focussing on the rapid publication of concise original studies and reviews dealing with processes, products and techniques in marine geology, geophysics, and geochemistry. Coverage spans
- structural geology, including plate tectonics of recent active and passive margins
- sea-bed morphology, physiography and morphodynamics
- sediment transport, depositional processes and sedimentary facies analysis
- stratigraphy, basin analysis and paleoenvironmental reconstruction
- sea-level history, paleoproductivity, gas hydrates, salt domes and brines
- sediment-water interaction and organism-sediment relationships
- geochemical tracers, stable isotopes and authigenic mineral formation
- geotechnical properties and application of new geo-marine techniques, and more.
In addition to regular articles, reviews, discussion/reply articles and technical papers, Geo-Marine Letters welcomes contributions by guest editors in the form of conference/workshop proceedings, or bundles of papers dealing with specific themes.