Luca Nanu , Luigi Colangelo , Carlo Novara , Carlos Perez Montenegro
{"title":"网络控制系统的嵌入式模型控制:机器人实验应用","authors":"Luca Nanu , Luigi Colangelo , Carlo Novara , Carlos Perez Montenegro","doi":"10.1016/j.mechatronics.2024.103160","DOIUrl":null,"url":null,"abstract":"<div><p>In Networked Control System (NCS), the absence of physical communication links in the loop leads to relevant issues, such as measurement delays and asynchronous execution of the control commands. In general, these issues may significantly compromise the performance of the NCS, possibly causing unstable behaviours. This paper presents an original approach to the design of a complete digital control unit for a system characterized by a varying sampling time and asynchronous command execution. The approach is based on the Embedded Model Control (EMC) methodology, whose key feature is the estimation of the disturbances, errors and nonlinearities affecting the plant to control and their online cancellation. In this way, measurement delays and execution asynchronicity are treated as errors and rejected up to a given frequency by the EMC unit. The effectiveness of the proposed approach is demonstrated in a real-world case-study, where the NCS consists of a differential-drive mobile robot (the plant) and a control unit, and the two subsystems communicate through the web without physical connection links. After a preliminary verification using a high-fidelity numerical simulator, the designed controller is validated in several experimental tests, carried out on a real-time embedded system incorporated in the robotic platform.</p></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"99 ","pages":"Article 103160"},"PeriodicalIF":3.1000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0957415824000254/pdfft?md5=663d0d1e97600edf698a0d886c44123c&pid=1-s2.0-S0957415824000254-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Embedded model control of networked control systems: An experimental robotic application\",\"authors\":\"Luca Nanu , Luigi Colangelo , Carlo Novara , Carlos Perez Montenegro\",\"doi\":\"10.1016/j.mechatronics.2024.103160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In Networked Control System (NCS), the absence of physical communication links in the loop leads to relevant issues, such as measurement delays and asynchronous execution of the control commands. In general, these issues may significantly compromise the performance of the NCS, possibly causing unstable behaviours. This paper presents an original approach to the design of a complete digital control unit for a system characterized by a varying sampling time and asynchronous command execution. The approach is based on the Embedded Model Control (EMC) methodology, whose key feature is the estimation of the disturbances, errors and nonlinearities affecting the plant to control and their online cancellation. In this way, measurement delays and execution asynchronicity are treated as errors and rejected up to a given frequency by the EMC unit. The effectiveness of the proposed approach is demonstrated in a real-world case-study, where the NCS consists of a differential-drive mobile robot (the plant) and a control unit, and the two subsystems communicate through the web without physical connection links. After a preliminary verification using a high-fidelity numerical simulator, the designed controller is validated in several experimental tests, carried out on a real-time embedded system incorporated in the robotic platform.</p></div>\",\"PeriodicalId\":49842,\"journal\":{\"name\":\"Mechatronics\",\"volume\":\"99 \",\"pages\":\"Article 103160\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0957415824000254/pdfft?md5=663d0d1e97600edf698a0d886c44123c&pid=1-s2.0-S0957415824000254-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechatronics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0957415824000254\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415824000254","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Embedded model control of networked control systems: An experimental robotic application
In Networked Control System (NCS), the absence of physical communication links in the loop leads to relevant issues, such as measurement delays and asynchronous execution of the control commands. In general, these issues may significantly compromise the performance of the NCS, possibly causing unstable behaviours. This paper presents an original approach to the design of a complete digital control unit for a system characterized by a varying sampling time and asynchronous command execution. The approach is based on the Embedded Model Control (EMC) methodology, whose key feature is the estimation of the disturbances, errors and nonlinearities affecting the plant to control and their online cancellation. In this way, measurement delays and execution asynchronicity are treated as errors and rejected up to a given frequency by the EMC unit. The effectiveness of the proposed approach is demonstrated in a real-world case-study, where the NCS consists of a differential-drive mobile robot (the plant) and a control unit, and the two subsystems communicate through the web without physical connection links. After a preliminary verification using a high-fidelity numerical simulator, the designed controller is validated in several experimental tests, carried out on a real-time embedded system incorporated in the robotic platform.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.