{"title":"利用地表跟踪法研究流体与演变地貌之间的相互作用","authors":"Jorge Molina, Pablo Ortiz, Rafael Bravo","doi":"10.1007/s00466-024-02464-6","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a continuous finite element model to simulate fluid flow-bedform interaction problems. The approach utilizes a non-oscillatory finite element algorithm to compute the fluid dynamics by solving the complete Navier–Stokes equations. Additionally, it addresses the evolution of the fluid–bedform interface as a consequence of spatially non-balanced sediment fluxes through the solution of a conservation equation for the erodible layer thickness. A sign preservation algorithm is particularly relevant for landform tracking because a positive definite thickness of the erodible sediment layer is essential to model the interaction between evolving cohesionless sediment layers and rigid beds. The fluid/terrain interface is explicitly captured through a surface tracking methodology. First, new nodes fitting the interface are incorporated into the finite element mesh; then, elements beneath this interface are deactivated, while intersected elements are restructured to get a mesh composed exclusively of tetrahedral elements. Numerical experiments demonstrate capabilities of the method by exploring relevant problems related with civil engineering, such as the evolution of trenches and the scour of a submerged pile.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"47 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluid-evolving landform interaction by a surface-tracking method\",\"authors\":\"Jorge Molina, Pablo Ortiz, Rafael Bravo\",\"doi\":\"10.1007/s00466-024-02464-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces a continuous finite element model to simulate fluid flow-bedform interaction problems. The approach utilizes a non-oscillatory finite element algorithm to compute the fluid dynamics by solving the complete Navier–Stokes equations. Additionally, it addresses the evolution of the fluid–bedform interface as a consequence of spatially non-balanced sediment fluxes through the solution of a conservation equation for the erodible layer thickness. A sign preservation algorithm is particularly relevant for landform tracking because a positive definite thickness of the erodible sediment layer is essential to model the interaction between evolving cohesionless sediment layers and rigid beds. The fluid/terrain interface is explicitly captured through a surface tracking methodology. First, new nodes fitting the interface are incorporated into the finite element mesh; then, elements beneath this interface are deactivated, while intersected elements are restructured to get a mesh composed exclusively of tetrahedral elements. Numerical experiments demonstrate capabilities of the method by exploring relevant problems related with civil engineering, such as the evolution of trenches and the scour of a submerged pile.</p>\",\"PeriodicalId\":55248,\"journal\":{\"name\":\"Computational Mechanics\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00466-024-02464-6\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00466-024-02464-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Fluid-evolving landform interaction by a surface-tracking method
This paper introduces a continuous finite element model to simulate fluid flow-bedform interaction problems. The approach utilizes a non-oscillatory finite element algorithm to compute the fluid dynamics by solving the complete Navier–Stokes equations. Additionally, it addresses the evolution of the fluid–bedform interface as a consequence of spatially non-balanced sediment fluxes through the solution of a conservation equation for the erodible layer thickness. A sign preservation algorithm is particularly relevant for landform tracking because a positive definite thickness of the erodible sediment layer is essential to model the interaction between evolving cohesionless sediment layers and rigid beds. The fluid/terrain interface is explicitly captured through a surface tracking methodology. First, new nodes fitting the interface are incorporated into the finite element mesh; then, elements beneath this interface are deactivated, while intersected elements are restructured to get a mesh composed exclusively of tetrahedral elements. Numerical experiments demonstrate capabilities of the method by exploring relevant problems related with civil engineering, such as the evolution of trenches and the scour of a submerged pile.
期刊介绍:
The journal reports original research of scholarly value in computational engineering and sciences. It focuses on areas that involve and enrich the application of mechanics, mathematics and numerical methods. It covers new methods and computationally-challenging technologies.
Areas covered include method development in solid, fluid mechanics and materials simulations with application to biomechanics and mechanics in medicine, multiphysics, fracture mechanics, multiscale mechanics, particle and meshfree methods. Additionally, manuscripts including simulation and method development of synthesis of material systems are encouraged.
Manuscripts reporting results obtained with established methods, unless they involve challenging computations, and manuscripts that report computations using commercial software packages are not encouraged.