利用地表跟踪法研究流体与演变地貌之间的相互作用

IF 3.7 2区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Computational Mechanics Pub Date : 2024-03-02 DOI:10.1007/s00466-024-02464-6
Jorge Molina, Pablo Ortiz, Rafael Bravo
{"title":"利用地表跟踪法研究流体与演变地貌之间的相互作用","authors":"Jorge Molina, Pablo Ortiz, Rafael Bravo","doi":"10.1007/s00466-024-02464-6","DOIUrl":null,"url":null,"abstract":"<p>This paper introduces a continuous finite element model to simulate fluid flow-bedform interaction problems. The approach utilizes a non-oscillatory finite element algorithm to compute the fluid dynamics by solving the complete Navier–Stokes equations. Additionally, it addresses the evolution of the fluid–bedform interface as a consequence of spatially non-balanced sediment fluxes through the solution of a conservation equation for the erodible layer thickness. A sign preservation algorithm is particularly relevant for landform tracking because a positive definite thickness of the erodible sediment layer is essential to model the interaction between evolving cohesionless sediment layers and rigid beds. The fluid/terrain interface is explicitly captured through a surface tracking methodology. First, new nodes fitting the interface are incorporated into the finite element mesh; then, elements beneath this interface are deactivated, while intersected elements are restructured to get a mesh composed exclusively of tetrahedral elements. Numerical experiments demonstrate capabilities of the method by exploring relevant problems related with civil engineering, such as the evolution of trenches and the scour of a submerged pile.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"47 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fluid-evolving landform interaction by a surface-tracking method\",\"authors\":\"Jorge Molina, Pablo Ortiz, Rafael Bravo\",\"doi\":\"10.1007/s00466-024-02464-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper introduces a continuous finite element model to simulate fluid flow-bedform interaction problems. The approach utilizes a non-oscillatory finite element algorithm to compute the fluid dynamics by solving the complete Navier–Stokes equations. Additionally, it addresses the evolution of the fluid–bedform interface as a consequence of spatially non-balanced sediment fluxes through the solution of a conservation equation for the erodible layer thickness. A sign preservation algorithm is particularly relevant for landform tracking because a positive definite thickness of the erodible sediment layer is essential to model the interaction between evolving cohesionless sediment layers and rigid beds. The fluid/terrain interface is explicitly captured through a surface tracking methodology. First, new nodes fitting the interface are incorporated into the finite element mesh; then, elements beneath this interface are deactivated, while intersected elements are restructured to get a mesh composed exclusively of tetrahedral elements. Numerical experiments demonstrate capabilities of the method by exploring relevant problems related with civil engineering, such as the evolution of trenches and the scour of a submerged pile.</p>\",\"PeriodicalId\":55248,\"journal\":{\"name\":\"Computational Mechanics\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00466-024-02464-6\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00466-024-02464-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种模拟流体流动-床形相互作用问题的连续有限元模型。该方法利用非振荡有限元算法,通过求解完整的纳维-斯托克斯方程来计算流体动力学。此外,它还通过求解可侵蚀层厚度的守恒方程,解决了因空间非平衡沉积物通量而导致的流体-岩床界面演变问题。符号保持算法与地貌跟踪特别相关,因为可侵蚀沉积层的正定厚度对于模拟不断演化的无粘性沉积层与刚性床之间的相互作用至关重要。流体/地形界面是通过表面跟踪方法明确捕捉到的。首先,将与界面相匹配的新节点纳入有限元网格;然后,停用界面下方的元素,并对相交元素进行重组,以获得完全由四面体元素组成的网格。数值实验通过探索与土木工程相关的问题,如沟槽的演变和水下桩的冲刷,证明了该方法的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fluid-evolving landform interaction by a surface-tracking method

This paper introduces a continuous finite element model to simulate fluid flow-bedform interaction problems. The approach utilizes a non-oscillatory finite element algorithm to compute the fluid dynamics by solving the complete Navier–Stokes equations. Additionally, it addresses the evolution of the fluid–bedform interface as a consequence of spatially non-balanced sediment fluxes through the solution of a conservation equation for the erodible layer thickness. A sign preservation algorithm is particularly relevant for landform tracking because a positive definite thickness of the erodible sediment layer is essential to model the interaction between evolving cohesionless sediment layers and rigid beds. The fluid/terrain interface is explicitly captured through a surface tracking methodology. First, new nodes fitting the interface are incorporated into the finite element mesh; then, elements beneath this interface are deactivated, while intersected elements are restructured to get a mesh composed exclusively of tetrahedral elements. Numerical experiments demonstrate capabilities of the method by exploring relevant problems related with civil engineering, such as the evolution of trenches and the scour of a submerged pile.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Mechanics
Computational Mechanics 物理-力学
CiteScore
7.80
自引率
12.20%
发文量
122
审稿时长
3.4 months
期刊介绍: The journal reports original research of scholarly value in computational engineering and sciences. It focuses on areas that involve and enrich the application of mechanics, mathematics and numerical methods. It covers new methods and computationally-challenging technologies. Areas covered include method development in solid, fluid mechanics and materials simulations with application to biomechanics and mechanics in medicine, multiphysics, fracture mechanics, multiscale mechanics, particle and meshfree methods. Additionally, manuscripts including simulation and method development of synthesis of material systems are encouraged. Manuscripts reporting results obtained with established methods, unless they involve challenging computations, and manuscripts that report computations using commercial software packages are not encouraged.
期刊最新文献
An improved thermomechanical model for the prediction of stress and strain evolution in proximity to the melt pool in powder bed fusion additive manufacturing A consistent discretization via the finite radon transform for FFT-based computational micromechanics On the use of scaled boundary shape functions in adaptive phase field modeling of brittle fracture Efficient and accurate analysis of locally resonant acoustic metamaterial plates using computational homogenization Modeling cellular self-organization in strain-stiffening hydrogels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1