{"title":"胆汁酸分析作为小儿炎症性肠病分期的有效生物标记物。","authors":"Wei Chen, Daosheng Wang, Xing Deng, Hong Zhang, Danfeng Dong, Tongxuan Su, Qiuya Lu, Cen Jiang, Qi Ni, Yingchao Cui, Qianli Zhao, Xuefeng Wang, Yuan Xiao, Yibing Peng","doi":"10.1080/19490976.2024.2323231","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid and accurate clinical staging of pediatric patients with inflammatory bowel disease (IBD) is crucial to determine the appropriate therapeutic approach. This study aimed to identify effective, convenient biomarkers for staging IBD in pediatric patients. We recruited cohorts of pediatric patients with varying severities of IBD to compare the features of the intestinal microbiota and metabolites between the active and remitting disease stages. Metabolites with potential for staging were targeted for further assessment in both patients and colitis model mice. The performance of these markers was determined using machine learning and was validated in a separate patient cohort. Pediatric patients with IBD exhibited distinct gut microbiota structures at different stages of disease activity. The enterotypes of patients with remitting and active disease were <i>Bacteroides-dominant</i> and <i>Escherichia-Shigella-dominant</i>, respectively. The bile secretion pathway showed the most significant differences between the two stages. Fecal and serum bile acid (BA) levels were strongly related to disease activity in both children and mice. The ratio of primary BAs to secondary BAs in serum was developed as a novel comprehensive index, showing excellent diagnostic performance in stratifying IBD activity (0.84 area under the receiver operating characteristic curve in the primary cohort; 77% accuracy in the validation cohort). In conclusion, we report profound insights into the interactions between the gut microbiota and metabolites in pediatric IBD. Serum BAs have potential as biomarkers for classifying disease activity, and may facilitate the personalization of treatment for IBD.</p>","PeriodicalId":12909,"journal":{"name":"Gut Microbes","volume":null,"pages":null},"PeriodicalIF":12.2000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913721/pdf/","citationCount":"0","resultStr":"{\"title\":\"Bile acid profiling as an effective biomarker for staging in pediatric inflammatory bowel disease.\",\"authors\":\"Wei Chen, Daosheng Wang, Xing Deng, Hong Zhang, Danfeng Dong, Tongxuan Su, Qiuya Lu, Cen Jiang, Qi Ni, Yingchao Cui, Qianli Zhao, Xuefeng Wang, Yuan Xiao, Yibing Peng\",\"doi\":\"10.1080/19490976.2024.2323231\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rapid and accurate clinical staging of pediatric patients with inflammatory bowel disease (IBD) is crucial to determine the appropriate therapeutic approach. This study aimed to identify effective, convenient biomarkers for staging IBD in pediatric patients. We recruited cohorts of pediatric patients with varying severities of IBD to compare the features of the intestinal microbiota and metabolites between the active and remitting disease stages. Metabolites with potential for staging were targeted for further assessment in both patients and colitis model mice. The performance of these markers was determined using machine learning and was validated in a separate patient cohort. Pediatric patients with IBD exhibited distinct gut microbiota structures at different stages of disease activity. The enterotypes of patients with remitting and active disease were <i>Bacteroides-dominant</i> and <i>Escherichia-Shigella-dominant</i>, respectively. The bile secretion pathway showed the most significant differences between the two stages. Fecal and serum bile acid (BA) levels were strongly related to disease activity in both children and mice. The ratio of primary BAs to secondary BAs in serum was developed as a novel comprehensive index, showing excellent diagnostic performance in stratifying IBD activity (0.84 area under the receiver operating characteristic curve in the primary cohort; 77% accuracy in the validation cohort). In conclusion, we report profound insights into the interactions between the gut microbiota and metabolites in pediatric IBD. Serum BAs have potential as biomarkers for classifying disease activity, and may facilitate the personalization of treatment for IBD.</p>\",\"PeriodicalId\":12909,\"journal\":{\"name\":\"Gut Microbes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":12.2000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913721/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Gut Microbes\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/19490976.2024.2323231\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Microbes","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19490976.2024.2323231","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Bile acid profiling as an effective biomarker for staging in pediatric inflammatory bowel disease.
Rapid and accurate clinical staging of pediatric patients with inflammatory bowel disease (IBD) is crucial to determine the appropriate therapeutic approach. This study aimed to identify effective, convenient biomarkers for staging IBD in pediatric patients. We recruited cohorts of pediatric patients with varying severities of IBD to compare the features of the intestinal microbiota and metabolites between the active and remitting disease stages. Metabolites with potential for staging were targeted for further assessment in both patients and colitis model mice. The performance of these markers was determined using machine learning and was validated in a separate patient cohort. Pediatric patients with IBD exhibited distinct gut microbiota structures at different stages of disease activity. The enterotypes of patients with remitting and active disease were Bacteroides-dominant and Escherichia-Shigella-dominant, respectively. The bile secretion pathway showed the most significant differences between the two stages. Fecal and serum bile acid (BA) levels were strongly related to disease activity in both children and mice. The ratio of primary BAs to secondary BAs in serum was developed as a novel comprehensive index, showing excellent diagnostic performance in stratifying IBD activity (0.84 area under the receiver operating characteristic curve in the primary cohort; 77% accuracy in the validation cohort). In conclusion, we report profound insights into the interactions between the gut microbiota and metabolites in pediatric IBD. Serum BAs have potential as biomarkers for classifying disease activity, and may facilitate the personalization of treatment for IBD.
期刊介绍:
The intestinal microbiota plays a crucial role in human physiology, influencing various aspects of health and disease such as nutrition, obesity, brain function, allergic responses, immunity, inflammatory bowel disease, irritable bowel syndrome, cancer development, cardiac disease, liver disease, and more.
Gut Microbes serves as a platform for showcasing and discussing state-of-the-art research related to the microorganisms present in the intestine. The journal emphasizes mechanistic and cause-and-effect studies. Additionally, it has a counterpart, Gut Microbes Reports, which places a greater focus on emerging topics and comparative and incremental studies.