{"title":"自然景观记忆的准确性和精确性:公园漫步","authors":"Leo Westebbe, Yibiao Liang, Erik Blaser","doi":"10.1162/opmi_a_00122","DOIUrl":null,"url":null,"abstract":"<p><p>It is challenging to quantify the accuracy and precision of scene memory because it is unclear what 'space' scenes occupy (how can we quantify error when misremembering a natural scene?). To address this, we exploited the ecologically valid, metric space in which scenes occur and are represented: routes. In a delayed estimation task, participants briefly saw a target scene drawn from a video of an outdoor 'route loop', then used a continuous report wheel of the route to pinpoint the scene. Accuracy was high and unbiased, indicating there was no net boundary extension/contraction. Interestingly, precision was higher for routes that were <i>more</i> self-similar (as characterized by the half-life, in meters, of a route's Multiscale Structural Similarity index), consistent with previous work finding a 'similarity advantage' where memory precision is regulated according to task demands. Overall, scenes were remembered to within a few meters of their actual location.</p>","PeriodicalId":32558,"journal":{"name":"Open Mind","volume":"8 ","pages":"131-147"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10898787/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Accuracy and Precision of Memory for Natural Scenes: A Walk in the Park.\",\"authors\":\"Leo Westebbe, Yibiao Liang, Erik Blaser\",\"doi\":\"10.1162/opmi_a_00122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is challenging to quantify the accuracy and precision of scene memory because it is unclear what 'space' scenes occupy (how can we quantify error when misremembering a natural scene?). To address this, we exploited the ecologically valid, metric space in which scenes occur and are represented: routes. In a delayed estimation task, participants briefly saw a target scene drawn from a video of an outdoor 'route loop', then used a continuous report wheel of the route to pinpoint the scene. Accuracy was high and unbiased, indicating there was no net boundary extension/contraction. Interestingly, precision was higher for routes that were <i>more</i> self-similar (as characterized by the half-life, in meters, of a route's Multiscale Structural Similarity index), consistent with previous work finding a 'similarity advantage' where memory precision is regulated according to task demands. Overall, scenes were remembered to within a few meters of their actual location.</p>\",\"PeriodicalId\":32558,\"journal\":{\"name\":\"Open Mind\",\"volume\":\"8 \",\"pages\":\"131-147\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10898787/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Mind\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1162/opmi_a_00122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mind","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1162/opmi_a_00122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
The Accuracy and Precision of Memory for Natural Scenes: A Walk in the Park.
It is challenging to quantify the accuracy and precision of scene memory because it is unclear what 'space' scenes occupy (how can we quantify error when misremembering a natural scene?). To address this, we exploited the ecologically valid, metric space in which scenes occur and are represented: routes. In a delayed estimation task, participants briefly saw a target scene drawn from a video of an outdoor 'route loop', then used a continuous report wheel of the route to pinpoint the scene. Accuracy was high and unbiased, indicating there was no net boundary extension/contraction. Interestingly, precision was higher for routes that were more self-similar (as characterized by the half-life, in meters, of a route's Multiscale Structural Similarity index), consistent with previous work finding a 'similarity advantage' where memory precision is regulated according to task demands. Overall, scenes were remembered to within a few meters of their actual location.