M. Maes , M. Gibilaro , P. Chamelot , C. Chiron , S. Chevrel , P. Pinet , L. Massot , J.J. Favier
{"title":"用于 ISRU 应用的熔融氟化盐中的月球模拟物行为","authors":"M. Maes , M. Gibilaro , P. Chamelot , C. Chiron , S. Chevrel , P. Pinet , L. Massot , J.J. Favier","doi":"10.1016/j.pss.2024.105854","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the behaviour of a lunar mare crystalline analog dissolved in molten LiF–NaF at 800 °C for the <em>in situ</em> production of metals as a part of In Situ Resource Utilization (ISRU) research. Molten fluorides have the capability to dissolve metallic oxides, and the Hall-Héroult process uses this kind of media to produce Al from Al<sub>2</sub>O<sub>3</sub>.The first step was to compare the individual solubility of the main oxides composing the mare lunar soil (SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, and MgO) with the solubility of the crystalline analog using Inductively Coupled Plasma – Atomic Emission Spectroscopy (ICP-AES). The species concentration added jointly are lower than the concentration of the same species added separately. Nonetheless, this study showed that LiF–NaF can be used to dissolve the analog with a maximum solubility of 3.9 wt% at 800 °C. Cyclic voltammograms were also used to verify the electroactivity of all oxide species in LiF–NaF, wherein all the main oxides are electroactive except SiO<sub>2</sub> and TiO<sub>2</sub>. Then electrolyses on different cathodic substrates were performed at different conditions and the obtained cathodic products were analysed with a scanning electron microscope (SEM) coupled with an energy dispersive spectroscopy (EDS). Despite the non-electroactivity of SiO<sub>2</sub> and TiO<sub>2</sub>, they were extracted in an alloyed form through Under Potential Deposition (UPD). Metallic deposition of other metals such as aluminium and titanium was achieved on carbon electrode. Finally, a synthetic mixture made of the different oxide species with the same chemical composition as the simulant, was investigated as a viable substitute for lunar mare soil. Its electrochemical behaviour was identical to the crystalline lunar simulant showing that our original process based on oxides dissolution is not influenced by the amorphous/crystalline state of the raw material.</p><p>the outputs of LiF–NaF molten process are not critically influenced by the physical state of the lunar regolith.</p></div>","PeriodicalId":20054,"journal":{"name":"Planetary and Space Science","volume":"242 ","pages":"Article 105854"},"PeriodicalIF":1.8000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0032063324000187/pdfft?md5=ef167a51d1a5b6f322e65e2913b65c38&pid=1-s2.0-S0032063324000187-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Lunar simulant behaviour in molten fluoride salt for ISRU applications\",\"authors\":\"M. Maes , M. Gibilaro , P. Chamelot , C. Chiron , S. Chevrel , P. Pinet , L. Massot , J.J. Favier\",\"doi\":\"10.1016/j.pss.2024.105854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study investigated the behaviour of a lunar mare crystalline analog dissolved in molten LiF–NaF at 800 °C for the <em>in situ</em> production of metals as a part of In Situ Resource Utilization (ISRU) research. Molten fluorides have the capability to dissolve metallic oxides, and the Hall-Héroult process uses this kind of media to produce Al from Al<sub>2</sub>O<sub>3</sub>.The first step was to compare the individual solubility of the main oxides composing the mare lunar soil (SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, Fe<sub>2</sub>O<sub>3</sub>, and MgO) with the solubility of the crystalline analog using Inductively Coupled Plasma – Atomic Emission Spectroscopy (ICP-AES). The species concentration added jointly are lower than the concentration of the same species added separately. Nonetheless, this study showed that LiF–NaF can be used to dissolve the analog with a maximum solubility of 3.9 wt% at 800 °C. Cyclic voltammograms were also used to verify the electroactivity of all oxide species in LiF–NaF, wherein all the main oxides are electroactive except SiO<sub>2</sub> and TiO<sub>2</sub>. Then electrolyses on different cathodic substrates were performed at different conditions and the obtained cathodic products were analysed with a scanning electron microscope (SEM) coupled with an energy dispersive spectroscopy (EDS). Despite the non-electroactivity of SiO<sub>2</sub> and TiO<sub>2</sub>, they were extracted in an alloyed form through Under Potential Deposition (UPD). Metallic deposition of other metals such as aluminium and titanium was achieved on carbon electrode. Finally, a synthetic mixture made of the different oxide species with the same chemical composition as the simulant, was investigated as a viable substitute for lunar mare soil. Its electrochemical behaviour was identical to the crystalline lunar simulant showing that our original process based on oxides dissolution is not influenced by the amorphous/crystalline state of the raw material.</p><p>the outputs of LiF–NaF molten process are not critically influenced by the physical state of the lunar regolith.</p></div>\",\"PeriodicalId\":20054,\"journal\":{\"name\":\"Planetary and Space Science\",\"volume\":\"242 \",\"pages\":\"Article 105854\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0032063324000187/pdfft?md5=ef167a51d1a5b6f322e65e2913b65c38&pid=1-s2.0-S0032063324000187-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Planetary and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0032063324000187\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planetary and Space Science","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032063324000187","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Lunar simulant behaviour in molten fluoride salt for ISRU applications
This study investigated the behaviour of a lunar mare crystalline analog dissolved in molten LiF–NaF at 800 °C for the in situ production of metals as a part of In Situ Resource Utilization (ISRU) research. Molten fluorides have the capability to dissolve metallic oxides, and the Hall-Héroult process uses this kind of media to produce Al from Al2O3.The first step was to compare the individual solubility of the main oxides composing the mare lunar soil (SiO2, Al2O3, Fe2O3, and MgO) with the solubility of the crystalline analog using Inductively Coupled Plasma – Atomic Emission Spectroscopy (ICP-AES). The species concentration added jointly are lower than the concentration of the same species added separately. Nonetheless, this study showed that LiF–NaF can be used to dissolve the analog with a maximum solubility of 3.9 wt% at 800 °C. Cyclic voltammograms were also used to verify the electroactivity of all oxide species in LiF–NaF, wherein all the main oxides are electroactive except SiO2 and TiO2. Then electrolyses on different cathodic substrates were performed at different conditions and the obtained cathodic products were analysed with a scanning electron microscope (SEM) coupled with an energy dispersive spectroscopy (EDS). Despite the non-electroactivity of SiO2 and TiO2, they were extracted in an alloyed form through Under Potential Deposition (UPD). Metallic deposition of other metals such as aluminium and titanium was achieved on carbon electrode. Finally, a synthetic mixture made of the different oxide species with the same chemical composition as the simulant, was investigated as a viable substitute for lunar mare soil. Its electrochemical behaviour was identical to the crystalline lunar simulant showing that our original process based on oxides dissolution is not influenced by the amorphous/crystalline state of the raw material.
the outputs of LiF–NaF molten process are not critically influenced by the physical state of the lunar regolith.
期刊介绍:
Planetary and Space Science publishes original articles as well as short communications (letters). Ground-based and space-borne instrumentation and laboratory simulation of solar system processes are included. The following fields of planetary and solar system research are covered:
• Celestial mechanics, including dynamical evolution of the solar system, gravitational captures and resonances, relativistic effects, tracking and dynamics
• Cosmochemistry and origin, including all aspects of the formation and initial physical and chemical evolution of the solar system
• Terrestrial planets and satellites, including the physics of the interiors, geology and morphology of the surfaces, tectonics, mineralogy and dating
• Outer planets and satellites, including formation and evolution, remote sensing at all wavelengths and in situ measurements
• Planetary atmospheres, including formation and evolution, circulation and meteorology, boundary layers, remote sensing and laboratory simulation
• Planetary magnetospheres and ionospheres, including origin of magnetic fields, magnetospheric plasma and radiation belts, and their interaction with the sun, the solar wind and satellites
• Small bodies, dust and rings, including asteroids, comets and zodiacal light and their interaction with the solar radiation and the solar wind
• Exobiology, including origin of life, detection of planetary ecosystems and pre-biological phenomena in the solar system and laboratory simulations
• Extrasolar systems, including the detection and/or the detectability of exoplanets and planetary systems, their formation and evolution, the physical and chemical properties of the exoplanets
• History of planetary and space research