Carl-Fredrik Burman, Erik Hermansson, David Bock, Stefan Franzén, David Svensson
{"title":"数字双胞胎和贝叶斯动态借贷:纳入历史控制数据的两种最新方法。","authors":"Carl-Fredrik Burman, Erik Hermansson, David Bock, Stefan Franzén, David Svensson","doi":"10.1002/pst.2376","DOIUrl":null,"url":null,"abstract":"<p><p>Recent years have seen an increasing interest in incorporating external control data for designing and evaluating randomized clinical trials (RCT). This may decrease costs and shorten inclusion times by reducing sample sizes. For small populations, with limited recruitment, this can be especially important. Bayesian dynamic borrowing (BDB) has been a popular choice as it claims to protect against potential prior data conflict. Digital twins (DT) has recently been proposed as another method to utilize historical data. DT, also known as PROCOVA™, is based on constructing a prognostic score from historical control data, typically using machine learning. This score is included in a pre-specified ANCOVA as the primary analysis of the RCT. The promise of this idea is power increase while guaranteeing strong type 1 error control. In this paper, we apply analytic derivations and simulations to analyze and discuss examples of these two approaches. We conclude that BDB and DT, although similar in scope, have fundamental differences which need be considered in the specific application. The inflation of the type 1 error is a serious issue for BDB, while more evidence is needed of a tangible value of DT for real RCTs.</p>","PeriodicalId":19934,"journal":{"name":"Pharmaceutical Statistics","volume":" ","pages":"611-629"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Digital twins and Bayesian dynamic borrowing: Two recent approaches for incorporating historical control data.\",\"authors\":\"Carl-Fredrik Burman, Erik Hermansson, David Bock, Stefan Franzén, David Svensson\",\"doi\":\"10.1002/pst.2376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recent years have seen an increasing interest in incorporating external control data for designing and evaluating randomized clinical trials (RCT). This may decrease costs and shorten inclusion times by reducing sample sizes. For small populations, with limited recruitment, this can be especially important. Bayesian dynamic borrowing (BDB) has been a popular choice as it claims to protect against potential prior data conflict. Digital twins (DT) has recently been proposed as another method to utilize historical data. DT, also known as PROCOVA™, is based on constructing a prognostic score from historical control data, typically using machine learning. This score is included in a pre-specified ANCOVA as the primary analysis of the RCT. The promise of this idea is power increase while guaranteeing strong type 1 error control. In this paper, we apply analytic derivations and simulations to analyze and discuss examples of these two approaches. We conclude that BDB and DT, although similar in scope, have fundamental differences which need be considered in the specific application. The inflation of the type 1 error is a serious issue for BDB, while more evidence is needed of a tangible value of DT for real RCTs.</p>\",\"PeriodicalId\":19934,\"journal\":{\"name\":\"Pharmaceutical Statistics\",\"volume\":\" \",\"pages\":\"611-629\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Statistics\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/pst.2376\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/4 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Statistics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/pst.2376","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/4 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Digital twins and Bayesian dynamic borrowing: Two recent approaches for incorporating historical control data.
Recent years have seen an increasing interest in incorporating external control data for designing and evaluating randomized clinical trials (RCT). This may decrease costs and shorten inclusion times by reducing sample sizes. For small populations, with limited recruitment, this can be especially important. Bayesian dynamic borrowing (BDB) has been a popular choice as it claims to protect against potential prior data conflict. Digital twins (DT) has recently been proposed as another method to utilize historical data. DT, also known as PROCOVA™, is based on constructing a prognostic score from historical control data, typically using machine learning. This score is included in a pre-specified ANCOVA as the primary analysis of the RCT. The promise of this idea is power increase while guaranteeing strong type 1 error control. In this paper, we apply analytic derivations and simulations to analyze and discuss examples of these two approaches. We conclude that BDB and DT, although similar in scope, have fundamental differences which need be considered in the specific application. The inflation of the type 1 error is a serious issue for BDB, while more evidence is needed of a tangible value of DT for real RCTs.
期刊介绍:
Pharmaceutical Statistics is an industry-led initiative, tackling real problems in statistical applications. The Journal publishes papers that share experiences in the practical application of statistics within the pharmaceutical industry. It covers all aspects of pharmaceutical statistical applications from discovery, through pre-clinical development, clinical development, post-marketing surveillance, consumer health, production, epidemiology, and health economics.
The Journal is both international and multidisciplinary. It includes high quality practical papers, case studies and review papers.