G-code Net:基于学习的快速成型结构合理设计与优化

IF 1.8 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY MRS Communications Pub Date : 2024-03-05 DOI:10.1557/s43579-024-00532-9
{"title":"G-code Net:基于学习的快速成型结构合理设计与优化","authors":"","doi":"10.1557/s43579-024-00532-9","DOIUrl":null,"url":null,"abstract":"<span> <h3>Abstract</h3> <p>In this work, we propose an integrated approach for the rational design of 3D-printed parts using machine learning. A Long Short-Term Memory (LSTM) neural network (G-code Net) was used to construct the functional relationship between the G-code and the mechanical properties of the 3D-printed part. Results show that a well-trained G-code Net can make accurate predictions of the mechanical responses and achieve a speed-up of three orders of magnitude compared to finite element. By further combining with genetic algorithm, one can efficiently perform inverse designs for 3D-printed parts with target mechanical response under other design constraints.</p> </span> <span> <h3>Graphic Abstract</h3> <p><span> <span> <img alt=\"\" src=\"https://static-content.springer.com/image/MediaObjects/43579_2024_532_Figa_HTML.png\"/> </span> </span></p> </span>","PeriodicalId":19016,"journal":{"name":"MRS Communications","volume":"6 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"G-code Net: Learning-based rational design and optimization for additively manufactured structures\",\"authors\":\"\",\"doi\":\"10.1557/s43579-024-00532-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<span> <h3>Abstract</h3> <p>In this work, we propose an integrated approach for the rational design of 3D-printed parts using machine learning. A Long Short-Term Memory (LSTM) neural network (G-code Net) was used to construct the functional relationship between the G-code and the mechanical properties of the 3D-printed part. Results show that a well-trained G-code Net can make accurate predictions of the mechanical responses and achieve a speed-up of three orders of magnitude compared to finite element. By further combining with genetic algorithm, one can efficiently perform inverse designs for 3D-printed parts with target mechanical response under other design constraints.</p> </span> <span> <h3>Graphic Abstract</h3> <p><span> <span> <img alt=\\\"\\\" src=\\\"https://static-content.springer.com/image/MediaObjects/43579_2024_532_Figa_HTML.png\\\"/> </span> </span></p> </span>\",\"PeriodicalId\":19016,\"journal\":{\"name\":\"MRS Communications\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MRS Communications\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1557/s43579-024-00532-9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MRS Communications","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1557/s43579-024-00532-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在这项工作中,我们提出了一种利用机器学习合理设计三维打印部件的综合方法。我们使用长短期记忆(LSTM)神经网络(G-code Net)来构建 G 代码与三维打印部件机械性能之间的函数关系。结果表明,训练有素的 G-code Net 可以准确预测机械响应,与有限元相比,速度提高了三个数量级。通过与遗传算法进一步结合,可以在其他设计约束条件下高效地对具有目标机械响应的三维打印部件进行反向设计。 图形摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
G-code Net: Learning-based rational design and optimization for additively manufactured structures

Abstract

In this work, we propose an integrated approach for the rational design of 3D-printed parts using machine learning. A Long Short-Term Memory (LSTM) neural network (G-code Net) was used to construct the functional relationship between the G-code and the mechanical properties of the 3D-printed part. Results show that a well-trained G-code Net can make accurate predictions of the mechanical responses and achieve a speed-up of three orders of magnitude compared to finite element. By further combining with genetic algorithm, one can efficiently perform inverse designs for 3D-printed parts with target mechanical response under other design constraints.

Graphic Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MRS Communications
MRS Communications MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
2.60
自引率
10.50%
发文量
166
审稿时长
>12 weeks
期刊介绍: MRS Communications is a full-color, high-impact journal focused on rapid publication of completed research with broad appeal to the materials community. MRS Communications offers a rapid but rigorous peer-review process and time to publication. Leveraging its access to the far-reaching technical expertise of MRS members and leading materials researchers from around the world, the journal boasts an experienced and highly respected board of principal editors and reviewers.
期刊最新文献
Design of fabrication-tolerant meta-atoms for polarization-multiplexed metasurfaces Early Career Materials Researcher Issue 2D materials-based ink to develop meta-structures for electromagnetic interference (EMI) shielding Current trends in macromolecular synthesis of inorganic nanoparticles Understanding surfaces and interfaces in nanocomposites of silicone and barium titanate through experiments and modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1