Zijian Cui, Chujin Liang, Binbin Guo, Feilong Lin, Yong Mu
{"title":"分层剪切法在 LADCP 数据处理中的应用与评估","authors":"Zijian Cui, Chujin Liang, Binbin Guo, Feilong Lin, Yong Mu","doi":"10.1007/s13131-023-2200-z","DOIUrl":null,"url":null,"abstract":"<p>The current velocity observation of LADCP (Lowered Acoustic Doppler Current Profiler) has the advantages of a large vertical range of observation and high operability compared with traditional current measurement methods, and is being widely used in the field of ocean observation. Shear and inverse methods are now commonly used by the international marine community to process LADCP data and calculate ocean current profiles. The two methods have their advantages and shortcomings. The shear method calculates the value of current shear more accurately, while the accuracy in an absolute value of the current is lower. The inverse method calculates the absolute value of the current velocity more accurately, but the current shear is less accurate. Based on the shear method, this paper proposes a layering shear method to calculate the current velocity profile by “layering averaging”, and proposes corresponding current calculation methods according to the different types of problems in several field observation data from the western Pacific, forming an independent LADCP data processing system. The comparison results have shown that the layering shear method can achieve the same effect as the inverse method in the calculation of the absolute value of current velocity, while retaining the advantages of the shear method in the calculation of a value of the current shear.</p>","PeriodicalId":6922,"journal":{"name":"Acta Oceanologica Sinica","volume":"234 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application and evaluation of layering shear method in LADCP data processing\",\"authors\":\"Zijian Cui, Chujin Liang, Binbin Guo, Feilong Lin, Yong Mu\",\"doi\":\"10.1007/s13131-023-2200-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The current velocity observation of LADCP (Lowered Acoustic Doppler Current Profiler) has the advantages of a large vertical range of observation and high operability compared with traditional current measurement methods, and is being widely used in the field of ocean observation. Shear and inverse methods are now commonly used by the international marine community to process LADCP data and calculate ocean current profiles. The two methods have their advantages and shortcomings. The shear method calculates the value of current shear more accurately, while the accuracy in an absolute value of the current is lower. The inverse method calculates the absolute value of the current velocity more accurately, but the current shear is less accurate. Based on the shear method, this paper proposes a layering shear method to calculate the current velocity profile by “layering averaging”, and proposes corresponding current calculation methods according to the different types of problems in several field observation data from the western Pacific, forming an independent LADCP data processing system. The comparison results have shown that the layering shear method can achieve the same effect as the inverse method in the calculation of the absolute value of current velocity, while retaining the advantages of the shear method in the calculation of a value of the current shear.</p>\",\"PeriodicalId\":6922,\"journal\":{\"name\":\"Acta Oceanologica Sinica\",\"volume\":\"234 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Oceanologica Sinica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s13131-023-2200-z\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OCEANOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Oceanologica Sinica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s13131-023-2200-z","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
Application and evaluation of layering shear method in LADCP data processing
The current velocity observation of LADCP (Lowered Acoustic Doppler Current Profiler) has the advantages of a large vertical range of observation and high operability compared with traditional current measurement methods, and is being widely used in the field of ocean observation. Shear and inverse methods are now commonly used by the international marine community to process LADCP data and calculate ocean current profiles. The two methods have their advantages and shortcomings. The shear method calculates the value of current shear more accurately, while the accuracy in an absolute value of the current is lower. The inverse method calculates the absolute value of the current velocity more accurately, but the current shear is less accurate. Based on the shear method, this paper proposes a layering shear method to calculate the current velocity profile by “layering averaging”, and proposes corresponding current calculation methods according to the different types of problems in several field observation data from the western Pacific, forming an independent LADCP data processing system. The comparison results have shown that the layering shear method can achieve the same effect as the inverse method in the calculation of the absolute value of current velocity, while retaining the advantages of the shear method in the calculation of a value of the current shear.
期刊介绍:
Founded in 1982, Acta Oceanologica Sinica is the official bi-monthly journal of the Chinese Society of Oceanography. It seeks to provide a forum for research papers in the field of oceanography from all over the world. In working to advance scholarly communication it has made the fast publication of high-quality research papers within this field its primary goal.
The journal encourages submissions from all branches of oceanography, including marine physics, marine chemistry, marine geology, marine biology, marine hydrology, marine meteorology, ocean engineering, marine remote sensing and marine environment sciences.
It publishes original research papers, review articles as well as research notes covering the whole spectrum of oceanography. Special issues emanating from related conferences and meetings are also considered. All papers are subject to peer review and are published online at SpringerLink.