Xiaohui Yao, Xiaohan Jiang, Haoran Luo, Hong Liang, Xiufen Ye, Yanhui Wei, Shan Cong
{"title":"MOCAT:带辅助分类器的多组学集成增强型自动编码器","authors":"Xiaohui Yao, Xiaohan Jiang, Haoran Luo, Hong Liang, Xiufen Ye, Yanhui Wei, Shan Cong","doi":"10.1186/s13040-024-00360-6","DOIUrl":null,"url":null,"abstract":"Integrating multi-omics data is emerging as a critical approach in enhancing our understanding of complex diseases. Innovative computational methods capable of managing high-dimensional and heterogeneous datasets are required to unlock the full potential of such rich and diverse data. We propose a Multi-Omics integration framework with auxiliary Classifiers-enhanced AuToencoders (MOCAT) to utilize intra- and inter-omics information comprehensively. Additionally, attention mechanisms with confidence learning are incorporated for enhanced feature representation and trustworthy prediction. Extensive experiments were conducted on four benchmark datasets to evaluate the effectiveness of our proposed model, including BRCA, ROSMAP, LGG, and KIPAN. Our model significantly improved most evaluation measurements and consistently surpassed the state-of-the-art methods. Ablation studies showed that the auxiliary classifiers significantly boosted classification accuracy in the ROSMAP and LGG datasets. Moreover, the attention mechanisms and confidence evaluation block contributed to improvements in the predictive accuracy and generalizability of our model. The proposed framework exhibits superior performance in disease classification and biomarker discovery, establishing itself as a robust and versatile tool for analyzing multi-layer biological data. This study highlights the significance of elaborated designed deep learning methodologies in dissecting complex disease phenotypes and improving the accuracy of disease predictions.","PeriodicalId":48947,"journal":{"name":"Biodata Mining","volume":"42 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MOCAT: multi-omics integration with auxiliary classifiers enhanced autoencoder\",\"authors\":\"Xiaohui Yao, Xiaohan Jiang, Haoran Luo, Hong Liang, Xiufen Ye, Yanhui Wei, Shan Cong\",\"doi\":\"10.1186/s13040-024-00360-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Integrating multi-omics data is emerging as a critical approach in enhancing our understanding of complex diseases. Innovative computational methods capable of managing high-dimensional and heterogeneous datasets are required to unlock the full potential of such rich and diverse data. We propose a Multi-Omics integration framework with auxiliary Classifiers-enhanced AuToencoders (MOCAT) to utilize intra- and inter-omics information comprehensively. Additionally, attention mechanisms with confidence learning are incorporated for enhanced feature representation and trustworthy prediction. Extensive experiments were conducted on four benchmark datasets to evaluate the effectiveness of our proposed model, including BRCA, ROSMAP, LGG, and KIPAN. Our model significantly improved most evaluation measurements and consistently surpassed the state-of-the-art methods. Ablation studies showed that the auxiliary classifiers significantly boosted classification accuracy in the ROSMAP and LGG datasets. Moreover, the attention mechanisms and confidence evaluation block contributed to improvements in the predictive accuracy and generalizability of our model. The proposed framework exhibits superior performance in disease classification and biomarker discovery, establishing itself as a robust and versatile tool for analyzing multi-layer biological data. This study highlights the significance of elaborated designed deep learning methodologies in dissecting complex disease phenotypes and improving the accuracy of disease predictions.\",\"PeriodicalId\":48947,\"journal\":{\"name\":\"Biodata Mining\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodata Mining\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13040-024-00360-6\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodata Mining","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13040-024-00360-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
MOCAT: multi-omics integration with auxiliary classifiers enhanced autoencoder
Integrating multi-omics data is emerging as a critical approach in enhancing our understanding of complex diseases. Innovative computational methods capable of managing high-dimensional and heterogeneous datasets are required to unlock the full potential of such rich and diverse data. We propose a Multi-Omics integration framework with auxiliary Classifiers-enhanced AuToencoders (MOCAT) to utilize intra- and inter-omics information comprehensively. Additionally, attention mechanisms with confidence learning are incorporated for enhanced feature representation and trustworthy prediction. Extensive experiments were conducted on four benchmark datasets to evaluate the effectiveness of our proposed model, including BRCA, ROSMAP, LGG, and KIPAN. Our model significantly improved most evaluation measurements and consistently surpassed the state-of-the-art methods. Ablation studies showed that the auxiliary classifiers significantly boosted classification accuracy in the ROSMAP and LGG datasets. Moreover, the attention mechanisms and confidence evaluation block contributed to improvements in the predictive accuracy and generalizability of our model. The proposed framework exhibits superior performance in disease classification and biomarker discovery, establishing itself as a robust and versatile tool for analyzing multi-layer biological data. This study highlights the significance of elaborated designed deep learning methodologies in dissecting complex disease phenotypes and improving the accuracy of disease predictions.
期刊介绍:
BioData Mining is an open access, open peer-reviewed journal encompassing research on all aspects of data mining applied to high-dimensional biological and biomedical data, focusing on computational aspects of knowledge discovery from large-scale genetic, transcriptomic, genomic, proteomic, and metabolomic data.
Topical areas include, but are not limited to:
-Development, evaluation, and application of novel data mining and machine learning algorithms.
-Adaptation, evaluation, and application of traditional data mining and machine learning algorithms.
-Open-source software for the application of data mining and machine learning algorithms.
-Design, development and integration of databases, software and web services for the storage, management, retrieval, and analysis of data from large scale studies.
-Pre-processing, post-processing, modeling, and interpretation of data mining and machine learning results for biological interpretation and knowledge discovery.