蜜蜂(Apis mellifera L., 1758)的觅食活动与镉暴露:综述。

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-12-01 Epub Date: 2024-03-05 DOI:10.1007/s12011-024-04118-3
Stephane Knoll, Maria Grazia Cappai
{"title":"蜜蜂(Apis mellifera L., 1758)的觅食活动与镉暴露:综述。","authors":"Stephane Knoll, Maria Grazia Cappai","doi":"10.1007/s12011-024-04118-3","DOIUrl":null,"url":null,"abstract":"<p><p>Honey bees are commonly exposed to a broad spectrum of xenobiotics, including heavy metals. Heavy metal toxicity is of concern in the context of global pollinator declines, especially since honey bees seem to be particularly susceptible to xenobiotics in general. Here we summarize current knowledge on the interplay between cadmium, one of the most toxic and mobile elements in the environment, and honey bees, the primary managed pollinator species worldwide. Overall, cadmium pollution has been shown to be ubiquitous, affecting industrial, urban and rural areas alike. Uptake of this heavy metal by plants serves as the primary route of exposure for bees (through pollen and nectar). Reported cadmium toxicity consists of lethal and sublethal effects (reduced development and growth) in both adult and larval stages, as well as various molecular responses related to detoxification and cellular antioxidant defence systems. Other effects of cadmium in honey bees include the disruption of synaptic signalling, calcium metabolism and muscle function.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502587/pdf/","citationCount":"0","resultStr":"{\"title\":\"Foraging Activity of Honey Bees (Apis mellifera L., 1758) and Exposure to Cadmium: a Review.\",\"authors\":\"Stephane Knoll, Maria Grazia Cappai\",\"doi\":\"10.1007/s12011-024-04118-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Honey bees are commonly exposed to a broad spectrum of xenobiotics, including heavy metals. Heavy metal toxicity is of concern in the context of global pollinator declines, especially since honey bees seem to be particularly susceptible to xenobiotics in general. Here we summarize current knowledge on the interplay between cadmium, one of the most toxic and mobile elements in the environment, and honey bees, the primary managed pollinator species worldwide. Overall, cadmium pollution has been shown to be ubiquitous, affecting industrial, urban and rural areas alike. Uptake of this heavy metal by plants serves as the primary route of exposure for bees (through pollen and nectar). Reported cadmium toxicity consists of lethal and sublethal effects (reduced development and growth) in both adult and larval stages, as well as various molecular responses related to detoxification and cellular antioxidant defence systems. Other effects of cadmium in honey bees include the disruption of synaptic signalling, calcium metabolism and muscle function.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502587/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12011-024-04118-3\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-024-04118-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

蜜蜂通常会接触到包括重金属在内的多种异种生物。在全球授粉昆虫减少的背景下,重金属的毒性引起了人们的关注,尤其是蜜蜂似乎特别容易受到异种生物的影响。镉是环境中毒性和流动性最强的元素之一,而蜜蜂是全球主要的管理授粉物种。总体而言,镉污染无处不在,对工业、城市和农村地区都有影响。植物吸收这种重金属是蜜蜂接触镉的主要途径(通过花粉和花蜜)。据报道,镉的毒性包括对成虫和幼虫阶段的致死和亚致死效应(发育和生长减弱),以及与解毒和细胞抗氧化防御系统有关的各种分子反应。镉对蜜蜂的其他影响包括干扰突触信号、钙代谢和肌肉功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Foraging Activity of Honey Bees (Apis mellifera L., 1758) and Exposure to Cadmium: a Review.

Honey bees are commonly exposed to a broad spectrum of xenobiotics, including heavy metals. Heavy metal toxicity is of concern in the context of global pollinator declines, especially since honey bees seem to be particularly susceptible to xenobiotics in general. Here we summarize current knowledge on the interplay between cadmium, one of the most toxic and mobile elements in the environment, and honey bees, the primary managed pollinator species worldwide. Overall, cadmium pollution has been shown to be ubiquitous, affecting industrial, urban and rural areas alike. Uptake of this heavy metal by plants serves as the primary route of exposure for bees (through pollen and nectar). Reported cadmium toxicity consists of lethal and sublethal effects (reduced development and growth) in both adult and larval stages, as well as various molecular responses related to detoxification and cellular antioxidant defence systems. Other effects of cadmium in honey bees include the disruption of synaptic signalling, calcium metabolism and muscle function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1