Thomas McAndrew , Graham C. Gibson , David Braun , Abhishek Srivastava , Kate Brown
{"title":"嵌合预测:利用模拟监测数据,通过人类判断改进传染病预测的实验","authors":"Thomas McAndrew , Graham C. Gibson , David Braun , Abhishek Srivastava , Kate Brown","doi":"10.1016/j.epidem.2024.100756","DOIUrl":null,"url":null,"abstract":"<div><p>Forecasts of infectious agents provide public health officials advanced warning about the intensity and timing of the spread of disease. Past work has found that accuracy and calibration of forecasts is weakest when attempting to predict an epidemic peak. Forecasts from a mechanistic model would be improved if there existed accurate information about the timing and intensity of an epidemic. We presented 3000 humans with simulated surveillance data about the number of incident hospitalizations from a current and two past seasons, and asked that they predict the peak time and intensity of the underlying epidemic. We found that in comparison to two control models, a model including human judgment produced more accurate forecasts of peak time and intensity of hospitalizations during an epidemic. Chimeric models have the potential to improve our ability to predict targets of public health interest which may in turn reduce infectious disease burden.</p></div>","PeriodicalId":49206,"journal":{"name":"Epidemics","volume":"47 ","pages":"Article 100756"},"PeriodicalIF":3.0000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1755436524000173/pdfft?md5=398548cb8f5fa1400b832d7e3238f8f8&pid=1-s2.0-S1755436524000173-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Chimeric Forecasting: An experiment to leverage human judgment to improve forecasts of infectious disease using simulated surveillance data\",\"authors\":\"Thomas McAndrew , Graham C. Gibson , David Braun , Abhishek Srivastava , Kate Brown\",\"doi\":\"10.1016/j.epidem.2024.100756\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Forecasts of infectious agents provide public health officials advanced warning about the intensity and timing of the spread of disease. Past work has found that accuracy and calibration of forecasts is weakest when attempting to predict an epidemic peak. Forecasts from a mechanistic model would be improved if there existed accurate information about the timing and intensity of an epidemic. We presented 3000 humans with simulated surveillance data about the number of incident hospitalizations from a current and two past seasons, and asked that they predict the peak time and intensity of the underlying epidemic. We found that in comparison to two control models, a model including human judgment produced more accurate forecasts of peak time and intensity of hospitalizations during an epidemic. Chimeric models have the potential to improve our ability to predict targets of public health interest which may in turn reduce infectious disease burden.</p></div>\",\"PeriodicalId\":49206,\"journal\":{\"name\":\"Epidemics\",\"volume\":\"47 \",\"pages\":\"Article 100756\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1755436524000173/pdfft?md5=398548cb8f5fa1400b832d7e3238f8f8&pid=1-s2.0-S1755436524000173-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epidemics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1755436524000173\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INFECTIOUS DISEASES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epidemics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1755436524000173","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
Chimeric Forecasting: An experiment to leverage human judgment to improve forecasts of infectious disease using simulated surveillance data
Forecasts of infectious agents provide public health officials advanced warning about the intensity and timing of the spread of disease. Past work has found that accuracy and calibration of forecasts is weakest when attempting to predict an epidemic peak. Forecasts from a mechanistic model would be improved if there existed accurate information about the timing and intensity of an epidemic. We presented 3000 humans with simulated surveillance data about the number of incident hospitalizations from a current and two past seasons, and asked that they predict the peak time and intensity of the underlying epidemic. We found that in comparison to two control models, a model including human judgment produced more accurate forecasts of peak time and intensity of hospitalizations during an epidemic. Chimeric models have the potential to improve our ability to predict targets of public health interest which may in turn reduce infectious disease burden.
期刊介绍:
Epidemics publishes papers on infectious disease dynamics in the broadest sense. Its scope covers both within-host dynamics of infectious agents and dynamics at the population level, particularly the interaction between the two. Areas of emphasis include: spread, transmission, persistence, implications and population dynamics of infectious diseases; population and public health as well as policy aspects of control and prevention; dynamics at the individual level; interaction with the environment, ecology and evolution of infectious diseases, as well as population genetics of infectious agents.