从直角坐标到大地坐标转换的完整闭式方法

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Journal of Geodesy Pub Date : 2024-03-05 DOI:10.1007/s00190-024-01821-w
{"title":"从直角坐标到大地坐标转换的完整闭式方法","authors":"","doi":"10.1007/s00190-024-01821-w","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>By introducing the auxiliary variable with respect to the reduced latitude, a new closed-form method for transforming Cartesian to geodetic coordinates has been proposed based on the solution of a special constructed unary quartic equation. The algorithm comes with rigorous and concise procedure of root-finding. Moreover, through theoretical analysis, different approaches with respective pros and cons to determine the geodetic latitude and height have been explored. Besides fast computation, numerical experiments covering the magnitude of the geodetic height from <span> <span>\\(- 6.33 \\times 10^{6} {\\text{m}}\\)</span> </span> to <span> <span>\\(10^{10} {\\text{m}}\\)</span> </span> have also shown that the new method can be operational with high precision at almost any point including the region near or at the pole, the equator and the center of the reference ellipsoid. Considering the accuracy, efficiency and adaptability simultaneously, it is prospective to be applied into computation and inspection on critical occasions in comparison to existing methods.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"502 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A complete closed-form method for transformation from Cartesian to geodetic coordinates\",\"authors\":\"\",\"doi\":\"10.1007/s00190-024-01821-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>By introducing the auxiliary variable with respect to the reduced latitude, a new closed-form method for transforming Cartesian to geodetic coordinates has been proposed based on the solution of a special constructed unary quartic equation. The algorithm comes with rigorous and concise procedure of root-finding. Moreover, through theoretical analysis, different approaches with respective pros and cons to determine the geodetic latitude and height have been explored. Besides fast computation, numerical experiments covering the magnitude of the geodetic height from <span> <span>\\\\(- 6.33 \\\\times 10^{6} {\\\\text{m}}\\\\)</span> </span> to <span> <span>\\\\(10^{10} {\\\\text{m}}\\\\)</span> </span> have also shown that the new method can be operational with high precision at almost any point including the region near or at the pole, the equator and the center of the reference ellipsoid. Considering the accuracy, efficiency and adaptability simultaneously, it is prospective to be applied into computation and inspection on critical occasions in comparison to existing methods.</p>\",\"PeriodicalId\":54822,\"journal\":{\"name\":\"Journal of Geodesy\",\"volume\":\"502 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodesy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00190-024-01821-w\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01821-w","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 通过引入与缩小纬度有关的辅助变量,提出了一种基于特殊构造的一元二次方程解的将直角坐标转换为大地坐标的新闭式方法。该算法具有严格而简洁的寻根程序。此外,通过理论分析,探讨了不同方法在确定大地纬度和高度方面各自的优缺点。除了快速计算之外,从(- 6.33 \times 10^{6} {\text{m}}\ )到(10^{10} {\text{m}}\ )的大地测量高度范围内的数值实验也表明,新方法几乎可以在任何地点高精度运行,包括极点附近或极点、赤道和参考椭球中心等区域。同时考虑到精度、效率和适应性,与现有方法相比,新方法有望应用于关键场合的计算和检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A complete closed-form method for transformation from Cartesian to geodetic coordinates

Abstract

By introducing the auxiliary variable with respect to the reduced latitude, a new closed-form method for transforming Cartesian to geodetic coordinates has been proposed based on the solution of a special constructed unary quartic equation. The algorithm comes with rigorous and concise procedure of root-finding. Moreover, through theoretical analysis, different approaches with respective pros and cons to determine the geodetic latitude and height have been explored. Besides fast computation, numerical experiments covering the magnitude of the geodetic height from \(- 6.33 \times 10^{6} {\text{m}}\) to \(10^{10} {\text{m}}\) have also shown that the new method can be operational with high precision at almost any point including the region near or at the pole, the equator and the center of the reference ellipsoid. Considering the accuracy, efficiency and adaptability simultaneously, it is prospective to be applied into computation and inspection on critical occasions in comparison to existing methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geodesy
Journal of Geodesy 地学-地球化学与地球物理
CiteScore
8.60
自引率
9.10%
发文量
85
审稿时长
9 months
期刊介绍: The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as: -Positioning -Reference frame -Geodetic networks -Modeling and quality control -Space geodesy -Remote sensing -Gravity fields -Geodynamics
期刊最新文献
Gap filling between GRACE and GRACE-FO missions: assessment of interpolation techniques Modified Bayesian method for simultaneously imaging fault geometry and slip distribution with reduced uncertainty, applied to 2017 Mw 7.3 Sarpol-e Zahab (Iran) earthquake Global 3D ionospheric shape function modeling with kriging Spherical radial basis functions model: approximating an integral functional of an isotropic Gaussian random field Capture of coseismic velocity waveform using GNSS raw Doppler and carrier phase data for enhancing shaking intensity estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1