{"title":"沿高大厚煤层地层长钻孔水力压裂技术研究","authors":"Chenyang Wang, Shugang Li, Li Liu, Le Liu","doi":"10.1155/2024/6305640","DOIUrl":null,"url":null,"abstract":"Gas extraction is a major technique for regional gas regulation and coal and gas comining in China. Assuring effective gas extraction operations is a crucial step in ensuring the supply of energy. The effect range of extraction drilling, pressure relief degree, and standard period of gas extraction are all constrained because of the geological constraints affecting coal gas permeability and occurrence. Combined with the advantages of directional drilling and high-efficiency pumping technology and antireflection enhanced pumping technology of hydraulic fracturing, directional long-drilling hydraulic fracturing can effectively improve the efficiency of gas control and expand the scale of gas control. The present study focuses on the exploration of directional long-hole hydraulic fracturing technique in thick coal seams with high gas content using Dafosi Mine as a case study. The research findings demonstrate that hydraulic fracturing contributes to the enlargement of pore size, pore density, and pore connectivity in coal seams. In-depth research was conducted on the expansion of coal seam fractures during the hydraulic fracturing process using the RFPA3D-flow numerical simulation program. Additionally, a comprehensive analysis of stress distribution around the fractures under the flow-solid coupling condition was performed. To further improve the effectiveness of hydraulic fracturing technique, the research team optimized the fracturing tools and construction processes in the four coal seams of Dafosi Mine. The impact of segmented hydraulic fracturing in coal seam bare hole drilling was also studied. Furthermore, an investigation method specific to the coal seam bare hole segmented hydraulic fracturing effects applicable to Dafosi Mine was developed. The maximum fracture extension pressure, minimum fracture closure pressure, and fracture morphology change characteristics during drilling and fracturing were measured, and the fracturing influence radius of coal seam was determined to be 46−58 m, the gas extraction concentration after fracturing increased by 2.20–4.22 times, and the 100-m extraction flow increased by 4.93–11.03 times. It gives other mines technical assistance so they can keep advocating and utilizing the horizontal directional long-drilling stage hydraulic fracturing technique.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Hydraulic Fracturing Technology of Long Boreholes along Strata of High Vast Thick Coal Seam\",\"authors\":\"Chenyang Wang, Shugang Li, Li Liu, Le Liu\",\"doi\":\"10.1155/2024/6305640\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gas extraction is a major technique for regional gas regulation and coal and gas comining in China. Assuring effective gas extraction operations is a crucial step in ensuring the supply of energy. The effect range of extraction drilling, pressure relief degree, and standard period of gas extraction are all constrained because of the geological constraints affecting coal gas permeability and occurrence. Combined with the advantages of directional drilling and high-efficiency pumping technology and antireflection enhanced pumping technology of hydraulic fracturing, directional long-drilling hydraulic fracturing can effectively improve the efficiency of gas control and expand the scale of gas control. The present study focuses on the exploration of directional long-hole hydraulic fracturing technique in thick coal seams with high gas content using Dafosi Mine as a case study. The research findings demonstrate that hydraulic fracturing contributes to the enlargement of pore size, pore density, and pore connectivity in coal seams. In-depth research was conducted on the expansion of coal seam fractures during the hydraulic fracturing process using the RFPA3D-flow numerical simulation program. Additionally, a comprehensive analysis of stress distribution around the fractures under the flow-solid coupling condition was performed. To further improve the effectiveness of hydraulic fracturing technique, the research team optimized the fracturing tools and construction processes in the four coal seams of Dafosi Mine. The impact of segmented hydraulic fracturing in coal seam bare hole drilling was also studied. Furthermore, an investigation method specific to the coal seam bare hole segmented hydraulic fracturing effects applicable to Dafosi Mine was developed. The maximum fracture extension pressure, minimum fracture closure pressure, and fracture morphology change characteristics during drilling and fracturing were measured, and the fracturing influence radius of coal seam was determined to be 46−58 m, the gas extraction concentration after fracturing increased by 2.20–4.22 times, and the 100-m extraction flow increased by 4.93–11.03 times. It gives other mines technical assistance so they can keep advocating and utilizing the horizontal directional long-drilling stage hydraulic fracturing technique.\",\"PeriodicalId\":7242,\"journal\":{\"name\":\"Advances in Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/6305640\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/6305640","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Research on Hydraulic Fracturing Technology of Long Boreholes along Strata of High Vast Thick Coal Seam
Gas extraction is a major technique for regional gas regulation and coal and gas comining in China. Assuring effective gas extraction operations is a crucial step in ensuring the supply of energy. The effect range of extraction drilling, pressure relief degree, and standard period of gas extraction are all constrained because of the geological constraints affecting coal gas permeability and occurrence. Combined with the advantages of directional drilling and high-efficiency pumping technology and antireflection enhanced pumping technology of hydraulic fracturing, directional long-drilling hydraulic fracturing can effectively improve the efficiency of gas control and expand the scale of gas control. The present study focuses on the exploration of directional long-hole hydraulic fracturing technique in thick coal seams with high gas content using Dafosi Mine as a case study. The research findings demonstrate that hydraulic fracturing contributes to the enlargement of pore size, pore density, and pore connectivity in coal seams. In-depth research was conducted on the expansion of coal seam fractures during the hydraulic fracturing process using the RFPA3D-flow numerical simulation program. Additionally, a comprehensive analysis of stress distribution around the fractures under the flow-solid coupling condition was performed. To further improve the effectiveness of hydraulic fracturing technique, the research team optimized the fracturing tools and construction processes in the four coal seams of Dafosi Mine. The impact of segmented hydraulic fracturing in coal seam bare hole drilling was also studied. Furthermore, an investigation method specific to the coal seam bare hole segmented hydraulic fracturing effects applicable to Dafosi Mine was developed. The maximum fracture extension pressure, minimum fracture closure pressure, and fracture morphology change characteristics during drilling and fracturing were measured, and the fracturing influence radius of coal seam was determined to be 46−58 m, the gas extraction concentration after fracturing increased by 2.20–4.22 times, and the 100-m extraction flow increased by 4.93–11.03 times. It gives other mines technical assistance so they can keep advocating and utilizing the horizontal directional long-drilling stage hydraulic fracturing technique.
期刊介绍:
Advances in Civil Engineering publishes papers in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies. Contributions from academia and from industry are equally encouraged.
Subject areas include (but are by no means limited to):
-Structural mechanics and engineering-
Structural design and construction management-
Structural analysis and computational mechanics-
Construction technology and implementation-
Construction materials design and engineering-
Highway and transport engineering-
Bridge and tunnel engineering-
Municipal and urban engineering-
Coastal, harbour and offshore engineering--
Geotechnical and earthquake engineering
Engineering for water, waste, energy, and environmental applications-
Hydraulic engineering and fluid mechanics-
Surveying, monitoring, and control systems in construction-
Health and safety in a civil engineering setting.
Advances in Civil Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.