来自含水硅酸盐熔体的气相结晶:对二共晶体质的实验模拟

IF 3.5 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Contributions to Mineralogy and Petrology Pub Date : 2024-03-06 DOI:10.1007/s00410-024-02105-4
Ryosuke Sakurai, Michihiko Nakamura, Satoshi Okumura, Mayumi Mujin, Takayuki Nakatani
{"title":"来自含水硅酸盐熔体的气相结晶:对二共晶体质的实验模拟","authors":"Ryosuke Sakurai, Michihiko Nakamura, Satoshi Okumura, Mayumi Mujin, Takayuki Nakatani","doi":"10.1007/s00410-024-02105-4","DOIUrl":null,"url":null,"abstract":"<p>Groundmass textures of volcanic rocks provide valuable insights into the processes of magma ascent, crystallization, and eruption. The diktytaxitic texture, characterized by a lath-shaped arrangement of feldspar microlites forming glass-free and angular pores, is commonly observed in silicic dome-forming rocks and Vulcanian ashfall deposits. This texture has the potential to control the explosivity of volcanic eruptions because its micropore network allows pervasive degassing during the final stages of magma ascent and eruption. However, the exact conditions and kinetics of the formation of diktytaxitic textures, which are often accompanied by vapor-phase cristobalite, remain largely unknown. Here, we show that the diktytaxitic texture and vapor-phase minerals, cristobalite and alkali feldspar, can be produced from bulk-andesitic magma with rhyolitic glass under water-saturated, near-solidus conditions (± ~10 MPa and ± ~20 °C within the solidus; 10–20 MPa and 850 °C for our starting pumices). Such crystallization proceeds through the partial evaporation of the supercooled melt, followed by the deposition of cristobalite and alkali feldspar as a result of the system selecting the fastest crystallization pathway with the lowest activation energy. The previously proposed mechanisms of halogen-induced corrosion or melt segregation by gas-driven filter pressing are not particularly necessary, although they may occur concurrently. Diktytaxitic groundmass formation is completed within 4–8 days, irrespective of the presence or composition of the halogen. These findings constrain the outgassing of lava domes and shallow magma intrusions and provide new insights into the final stages of hydrous magma crystallization on Earth.</p>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vapor-phase crystallization from a hydrous silicate melt: an experimental simulation of diktytaxitic texture\",\"authors\":\"Ryosuke Sakurai, Michihiko Nakamura, Satoshi Okumura, Mayumi Mujin, Takayuki Nakatani\",\"doi\":\"10.1007/s00410-024-02105-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Groundmass textures of volcanic rocks provide valuable insights into the processes of magma ascent, crystallization, and eruption. The diktytaxitic texture, characterized by a lath-shaped arrangement of feldspar microlites forming glass-free and angular pores, is commonly observed in silicic dome-forming rocks and Vulcanian ashfall deposits. This texture has the potential to control the explosivity of volcanic eruptions because its micropore network allows pervasive degassing during the final stages of magma ascent and eruption. However, the exact conditions and kinetics of the formation of diktytaxitic textures, which are often accompanied by vapor-phase cristobalite, remain largely unknown. Here, we show that the diktytaxitic texture and vapor-phase minerals, cristobalite and alkali feldspar, can be produced from bulk-andesitic magma with rhyolitic glass under water-saturated, near-solidus conditions (± ~10 MPa and ± ~20 °C within the solidus; 10–20 MPa and 850 °C for our starting pumices). Such crystallization proceeds through the partial evaporation of the supercooled melt, followed by the deposition of cristobalite and alkali feldspar as a result of the system selecting the fastest crystallization pathway with the lowest activation energy. The previously proposed mechanisms of halogen-induced corrosion or melt segregation by gas-driven filter pressing are not particularly necessary, although they may occur concurrently. Diktytaxitic groundmass formation is completed within 4–8 days, irrespective of the presence or composition of the halogen. These findings constrain the outgassing of lava domes and shallow magma intrusions and provide new insights into the final stages of hydrous magma crystallization on Earth.</p>\",\"PeriodicalId\":526,\"journal\":{\"name\":\"Contributions to Mineralogy and Petrology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions to Mineralogy and Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s00410-024-02105-4\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00410-024-02105-4","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

火山岩的地表纹理为了解岩浆上升、结晶和喷发过程提供了宝贵的信息。硅质穹隆形成岩和火成岩火山灰沉积物中常见的地层纹理,其特征是长石微晶形成无玻璃和角状孔隙的板状排列。这种纹理有可能控制火山喷发的爆炸性,因为它的微孔网络允许在岩浆上升和喷发的最后阶段普遍脱气。然而,人们对通常伴有气相霞石的矽卡岩质地形成的确切条件和动力学仍然知之甚少。在这里,我们展示了在水饱和、近固相条件下(固相内为± ~10 兆帕和± ~20 °C;我们的起始浮石为 10-20 兆帕和 850 °C),可以从带有流纹岩玻璃的块状安山岩岩浆中产生二强齐晶纹理和气相矿物--霞石和碱长石。这种结晶是通过过冷熔体的部分蒸发进行的,然后是钙钛矿和碱长石的沉积,这是系统选择活化能最低的最快结晶途径的结果。之前提出的卤素诱导的腐蚀或气体驱动的压滤产生的熔体偏析机制并不是特别必要,尽管它们可能同时发生。无论卤素的存在或组成如何,二烷基共沸基质的形成都会在 4-8 天内完成。这些发现制约了熔岩穹丘和浅层岩浆侵入体的排气过程,并为了解地球上含水岩浆结晶的最后阶段提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vapor-phase crystallization from a hydrous silicate melt: an experimental simulation of diktytaxitic texture

Groundmass textures of volcanic rocks provide valuable insights into the processes of magma ascent, crystallization, and eruption. The diktytaxitic texture, characterized by a lath-shaped arrangement of feldspar microlites forming glass-free and angular pores, is commonly observed in silicic dome-forming rocks and Vulcanian ashfall deposits. This texture has the potential to control the explosivity of volcanic eruptions because its micropore network allows pervasive degassing during the final stages of magma ascent and eruption. However, the exact conditions and kinetics of the formation of diktytaxitic textures, which are often accompanied by vapor-phase cristobalite, remain largely unknown. Here, we show that the diktytaxitic texture and vapor-phase minerals, cristobalite and alkali feldspar, can be produced from bulk-andesitic magma with rhyolitic glass under water-saturated, near-solidus conditions (± ~10 MPa and ± ~20 °C within the solidus; 10–20 MPa and 850 °C for our starting pumices). Such crystallization proceeds through the partial evaporation of the supercooled melt, followed by the deposition of cristobalite and alkali feldspar as a result of the system selecting the fastest crystallization pathway with the lowest activation energy. The previously proposed mechanisms of halogen-induced corrosion or melt segregation by gas-driven filter pressing are not particularly necessary, although they may occur concurrently. Diktytaxitic groundmass formation is completed within 4–8 days, irrespective of the presence or composition of the halogen. These findings constrain the outgassing of lava domes and shallow magma intrusions and provide new insights into the final stages of hydrous magma crystallization on Earth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Contributions to Mineralogy and Petrology
Contributions to Mineralogy and Petrology 地学-地球化学与地球物理
CiteScore
6.50
自引率
5.70%
发文量
94
审稿时长
1.7 months
期刊介绍: Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy. Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.
期刊最新文献
Petrogenesis of the Deccan high-Mg basalts and picrites Experimental exploration of polycyclic aromatic hydrocarbons stability in subduction zones Multi-million-year magmatic and hydrothermal activity is key to the formation of supergiant to behemothian porphyry copper deposits From melt- to crystal-rich magmatic systems during rift localization: Insights from mineral chemistry in Central Afar (Ethiopia) Corundum-quartz metastability: the role of silicon diffusion in corundum
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1