考虑原管厚度不均匀和模具偏差的管材拉拔过程中壁厚分析的新型有限元模型

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING International Journal of Material Forming Pub Date : 2024-03-06 DOI:10.1007/s12289-024-01813-3
N. A. Razali, J. B. Byun, M. S. Joun
{"title":"考虑原管厚度不均匀和模具偏差的管材拉拔过程中壁厚分析的新型有限元模型","authors":"N. A. Razali, J. B. Byun, M. S. Joun","doi":"10.1007/s12289-024-01813-3","DOIUrl":null,"url":null,"abstract":"<p>Conventional engineering analyses for tube drawing processes have assumed an ideal material with uniform initial tube thickness; however, these assumptions limit the ability to address quality issues in the manufacturing industry. In this study, we present a finite element analysis model to analyze the tube drawing process with non-uniformity of the initial tube thickness and misalignment of the drawing die, using the implicit elastoplastic finite element method with a multibody treatment scheme (MBTS). We specifically focus on tube eccentricity. The plug in the MBTS is regarded as a deformable body with any fixed boundary condition in the lateral direction. Our analysis results show that an adequately tilted drawing die substantially reduces the eccentricity and thickness non-uniformity. The predictions are validated by comparison with experimental results in the literature.</p>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Novel finite element model of analyzing wall thickness during tube drawing considering raw tube’s thickness non-uniformity and die misalignment\",\"authors\":\"N. A. Razali, J. B. Byun, M. S. Joun\",\"doi\":\"10.1007/s12289-024-01813-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conventional engineering analyses for tube drawing processes have assumed an ideal material with uniform initial tube thickness; however, these assumptions limit the ability to address quality issues in the manufacturing industry. In this study, we present a finite element analysis model to analyze the tube drawing process with non-uniformity of the initial tube thickness and misalignment of the drawing die, using the implicit elastoplastic finite element method with a multibody treatment scheme (MBTS). We specifically focus on tube eccentricity. The plug in the MBTS is regarded as a deformable body with any fixed boundary condition in the lateral direction. Our analysis results show that an adequately tilted drawing die substantially reduces the eccentricity and thickness non-uniformity. The predictions are validated by comparison with experimental results in the literature.</p>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s12289-024-01813-3\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12289-024-01813-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

传统的管材拉拔工艺工程分析假定材料为理想材料,初始管材厚度均匀一致;然而,这些假定限制了解决制造业质量问题的能力。在本研究中,我们提出了一个有限元分析模型,利用隐式弹塑性有限元方法和多体处理方案 (MBTS),分析初始管材厚度不均匀和拉丝模不对准的管材拉伸过程。我们特别关注管材偏心问题。在 MBTS 中,插头被视为一个在横向上具有任意固定边界条件的可变形体。我们的分析结果表明,适当倾斜的拉丝模可大大降低偏心率和厚度不均匀性。通过与文献中的实验结果进行比较,我们验证了上述预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Novel finite element model of analyzing wall thickness during tube drawing considering raw tube’s thickness non-uniformity and die misalignment

Conventional engineering analyses for tube drawing processes have assumed an ideal material with uniform initial tube thickness; however, these assumptions limit the ability to address quality issues in the manufacturing industry. In this study, we present a finite element analysis model to analyze the tube drawing process with non-uniformity of the initial tube thickness and misalignment of the drawing die, using the implicit elastoplastic finite element method with a multibody treatment scheme (MBTS). We specifically focus on tube eccentricity. The plug in the MBTS is regarded as a deformable body with any fixed boundary condition in the lateral direction. Our analysis results show that an adequately tilted drawing die substantially reduces the eccentricity and thickness non-uniformity. The predictions are validated by comparison with experimental results in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
期刊最新文献
Electromagnetic blank holding system for flexible segmentation in forming of complex parts: a flow rate-based design, configuration, and validation Evaluating residual stresses in metal additive manufacturing: a comprehensive review of detection methods, impact, and mitigation strategies Straightforward identification of flow curve and yield locus parameters from three-point bending experiments Machine learning in polymer additive manufacturing: a review Influence of spindle speeds on the formability, microstructure, mechanical properties and fracture behaviour of Ti-6Al-4V alloy foils during single point micro incremental forming (SPMIF) process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1