Sarmed Wahab, Nasim Shakouri Mahmoudabadi, Sarmad Waqas, Nouman Herl, Muhammad Iqbal, Khurshid Alam, Afaq Ahmad
{"title":"钢筋混凝土板柱连接剪切强度预测模型的比较分析","authors":"Sarmed Wahab, Nasim Shakouri Mahmoudabadi, Sarmad Waqas, Nouman Herl, Muhammad Iqbal, Khurshid Alam, Afaq Ahmad","doi":"10.1155/2024/1784088","DOIUrl":null,"url":null,"abstract":"This research focuses on a comprehensive comparative analysis of shear strength prediction in slab–column connections, integrating machine learning, design codes, and finite element analysis (FEA). The existing empirical models lack the influencing parameters that decrease their prediction accuracy. In this paper, current design codes of American Concrete Institute 318-19 (ACI 318-19) and Eurocode 2 (EC2), as well as innovative approaches like the compressive force path method and machine learning models are employed to predict the punching shear strength using a comprehensive database of 610 samples. The database consists of seven key parameters including slab depth (<i>d</i><sub><i>s</i></sub>), column dimension (<i>c</i><sub><i>s</i></sub>), shear span ratio (<i>a</i><sub><i>v</i></sub>/<i>d</i>), yield strength of longitudinal steel (<i>f</i><sub><i>y</i></sub>), longitudinal reinforcement ratio (<i>ρ</i><sub><i>l</i></sub>), ultimate load-carrying capacity (<i>V</i><sub><i>u</i></sub>), and concrete compressive strength (<i>f</i><sub><i>c</i></sub>). Compared with the design codes and other machine learning models, the particle swarm optimization-based feedforward neural network (PSOFNN) performed the best predictions. PSOFNN predicted the punching shear of flat slab with maximum accuracy with <i>R</i><sup>2</sup> value of 99.37% and least MSE and MAE values of 0.0275% and 1.214%, respectively. The findings of the study are validated through FEA of slabs to confirm experimental results and machine learning predictions that showed excellent agreement with PSOFNN predictions. The research also provides insight into the application of metaheuristic models along with ANN, revealing that not all metaheuristic models can outperform ANN as usually perceived. The study also highlights superior predictive capabilities of EC2 over ACI 318-19 for punching shear values.","PeriodicalId":7242,"journal":{"name":"Advances in Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of Shear Strength Prediction Models for Reinforced Concrete Slab–Column Connections\",\"authors\":\"Sarmed Wahab, Nasim Shakouri Mahmoudabadi, Sarmad Waqas, Nouman Herl, Muhammad Iqbal, Khurshid Alam, Afaq Ahmad\",\"doi\":\"10.1155/2024/1784088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research focuses on a comprehensive comparative analysis of shear strength prediction in slab–column connections, integrating machine learning, design codes, and finite element analysis (FEA). The existing empirical models lack the influencing parameters that decrease their prediction accuracy. In this paper, current design codes of American Concrete Institute 318-19 (ACI 318-19) and Eurocode 2 (EC2), as well as innovative approaches like the compressive force path method and machine learning models are employed to predict the punching shear strength using a comprehensive database of 610 samples. The database consists of seven key parameters including slab depth (<i>d</i><sub><i>s</i></sub>), column dimension (<i>c</i><sub><i>s</i></sub>), shear span ratio (<i>a</i><sub><i>v</i></sub>/<i>d</i>), yield strength of longitudinal steel (<i>f</i><sub><i>y</i></sub>), longitudinal reinforcement ratio (<i>ρ</i><sub><i>l</i></sub>), ultimate load-carrying capacity (<i>V</i><sub><i>u</i></sub>), and concrete compressive strength (<i>f</i><sub><i>c</i></sub>). Compared with the design codes and other machine learning models, the particle swarm optimization-based feedforward neural network (PSOFNN) performed the best predictions. PSOFNN predicted the punching shear of flat slab with maximum accuracy with <i>R</i><sup>2</sup> value of 99.37% and least MSE and MAE values of 0.0275% and 1.214%, respectively. The findings of the study are validated through FEA of slabs to confirm experimental results and machine learning predictions that showed excellent agreement with PSOFNN predictions. The research also provides insight into the application of metaheuristic models along with ANN, revealing that not all metaheuristic models can outperform ANN as usually perceived. The study also highlights superior predictive capabilities of EC2 over ACI 318-19 for punching shear values.\",\"PeriodicalId\":7242,\"journal\":{\"name\":\"Advances in Civil Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/1784088\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/1784088","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Comparative Analysis of Shear Strength Prediction Models for Reinforced Concrete Slab–Column Connections
This research focuses on a comprehensive comparative analysis of shear strength prediction in slab–column connections, integrating machine learning, design codes, and finite element analysis (FEA). The existing empirical models lack the influencing parameters that decrease their prediction accuracy. In this paper, current design codes of American Concrete Institute 318-19 (ACI 318-19) and Eurocode 2 (EC2), as well as innovative approaches like the compressive force path method and machine learning models are employed to predict the punching shear strength using a comprehensive database of 610 samples. The database consists of seven key parameters including slab depth (ds), column dimension (cs), shear span ratio (av/d), yield strength of longitudinal steel (fy), longitudinal reinforcement ratio (ρl), ultimate load-carrying capacity (Vu), and concrete compressive strength (fc). Compared with the design codes and other machine learning models, the particle swarm optimization-based feedforward neural network (PSOFNN) performed the best predictions. PSOFNN predicted the punching shear of flat slab with maximum accuracy with R2 value of 99.37% and least MSE and MAE values of 0.0275% and 1.214%, respectively. The findings of the study are validated through FEA of slabs to confirm experimental results and machine learning predictions that showed excellent agreement with PSOFNN predictions. The research also provides insight into the application of metaheuristic models along with ANN, revealing that not all metaheuristic models can outperform ANN as usually perceived. The study also highlights superior predictive capabilities of EC2 over ACI 318-19 for punching shear values.
期刊介绍:
Advances in Civil Engineering publishes papers in all areas of civil engineering. The journal welcomes submissions across a range of disciplines, and publishes both theoretical and practical studies. Contributions from academia and from industry are equally encouraged.
Subject areas include (but are by no means limited to):
-Structural mechanics and engineering-
Structural design and construction management-
Structural analysis and computational mechanics-
Construction technology and implementation-
Construction materials design and engineering-
Highway and transport engineering-
Bridge and tunnel engineering-
Municipal and urban engineering-
Coastal, harbour and offshore engineering--
Geotechnical and earthquake engineering
Engineering for water, waste, energy, and environmental applications-
Hydraulic engineering and fluid mechanics-
Surveying, monitoring, and control systems in construction-
Health and safety in a civil engineering setting.
Advances in Civil Engineering also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.