对未知形式的群组协方差矩阵进行贝叶斯估计

IF 9.9 3区 经济学 Q1 ECONOMICS Journal of Econometrics Pub Date : 2024-03-07 DOI:10.1016/j.jeconom.2024.105725
Drew Creal , Jaeho Kim
{"title":"对未知形式的群组协方差矩阵进行贝叶斯估计","authors":"Drew Creal ,&nbsp;Jaeho Kim","doi":"10.1016/j.jeconom.2024.105725","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a flexible Bayesian model for cluster covariance matrices in large dimensions where the number of clusters and the assignment of cross-sectional units to a cluster are a-priori unknown and estimated from the data. In a cluster covariance matrix, the variances and covariances are equal within each diagonal block, while the covariances are equal in each off-diagonal block. This reduces the number of parameters by pooling those parameters together that are in the same cluster. In order to treat the number of clusters and the cluster assignments as unknowns, we build a random partition model which assigns a prior distribution over the space of partitions of the data into clusters. Sampling from the posterior over the space of partitions creates a flexible estimator because it averages across a wide set of cluster covariance matrices. We illustrate our methods on linear factor models and large vector autoregressions.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"241 1","pages":"Article 105725"},"PeriodicalIF":9.9000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian estimation of cluster covariance matrices of unknown form\",\"authors\":\"Drew Creal ,&nbsp;Jaeho Kim\",\"doi\":\"10.1016/j.jeconom.2024.105725\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We develop a flexible Bayesian model for cluster covariance matrices in large dimensions where the number of clusters and the assignment of cross-sectional units to a cluster are a-priori unknown and estimated from the data. In a cluster covariance matrix, the variances and covariances are equal within each diagonal block, while the covariances are equal in each off-diagonal block. This reduces the number of parameters by pooling those parameters together that are in the same cluster. In order to treat the number of clusters and the cluster assignments as unknowns, we build a random partition model which assigns a prior distribution over the space of partitions of the data into clusters. Sampling from the posterior over the space of partitions creates a flexible estimator because it averages across a wide set of cluster covariance matrices. We illustrate our methods on linear factor models and large vector autoregressions.</p></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"241 1\",\"pages\":\"Article 105725\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030440762400071X\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030440762400071X","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

我们为大维度的聚类协方差矩阵建立了一个灵活的贝叶斯模型,在这个模型中,聚类的数量和横截面单位在聚类中的分配是事先未知的,并且是根据数据估计出来的。在聚类协方差矩阵中,每个对角块内的方差和协方差相等,而每个非对角块内的协方差相等。这样就可以将处于同一聚类中的参数集中在一起,从而减少参数的数量。为了将聚类数量和聚类分配视为未知数,我们建立了一个随机分区模型,在数据的聚类分区空间上分配一个先验分布。从分区空间上的后验分布采样,可以创建一个灵活的估计器,因为它可以在一组广泛的聚类协方差矩阵中求取平均值。我们用线性因子模型和大向量自回归来说明我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bayesian estimation of cluster covariance matrices of unknown form

We develop a flexible Bayesian model for cluster covariance matrices in large dimensions where the number of clusters and the assignment of cross-sectional units to a cluster are a-priori unknown and estimated from the data. In a cluster covariance matrix, the variances and covariances are equal within each diagonal block, while the covariances are equal in each off-diagonal block. This reduces the number of parameters by pooling those parameters together that are in the same cluster. In order to treat the number of clusters and the cluster assignments as unknowns, we build a random partition model which assigns a prior distribution over the space of partitions of the data into clusters. Sampling from the posterior over the space of partitions creates a flexible estimator because it averages across a wide set of cluster covariance matrices. We illustrate our methods on linear factor models and large vector autoregressions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
期刊最新文献
GLS under monotone heteroskedasticity Multivariate spatiotemporal models with low rank coefficient matrix Estimating and testing for smooth structural changes in moment condition models Validating approximate slope homogeneity in large panels Pseudo-variance quasi-maximum likelihood estimation of semi-parametric time series models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1