基于 Ti3C2 MXene 负极载硒的高性能全固态锂-硒电池

Renbo Liu , Chongxing Li , Qingyu Li , Shuxian Zhang , Chengxiang Wang , Zhiwei Zhang , Yuanchang Shi , Lidong Yang , Longwei Yin , Rutao Wang
{"title":"基于 Ti3C2 MXene 负极载硒的高性能全固态锂-硒电池","authors":"Renbo Liu ,&nbsp;Chongxing Li ,&nbsp;Qingyu Li ,&nbsp;Shuxian Zhang ,&nbsp;Chengxiang Wang ,&nbsp;Zhiwei Zhang ,&nbsp;Yuanchang Shi ,&nbsp;Lidong Yang ,&nbsp;Longwei Yin ,&nbsp;Rutao Wang","doi":"10.1016/j.gerr.2024.100058","DOIUrl":null,"url":null,"abstract":"<div><p>Selenium has high theoretical volumetric capacity of 3253 mAh cm<sup>−3</sup> and acceptable electronic conductivity of 1 × 10<sup>−5</sup> S m<sup>−1</sup>, which is considered as a potential alternative to sulfur cathode for all-solid-state rechargeable batteries with high energy density. However, the development of all-solid-state Li–Se batteries (ASSLSBs) are hindered by sluggish kinetics and poor cycling life. In this work, trigonal Se nanocrystallines are homogenously distributed in the interspace and on the surface of MXene layers (denoted as Se@MXene composite) by a novel melt-diffusion method. ASSLSBs based on this Se@MXene composite cathode exhibit large specific capacity of 632 mAh g<sup>−1</sup> at 0.05 A g<sup>−1</sup>, high-rate capability over 4 A g<sup>−1</sup>, and excellent cycling stability over 300 cycles at 1 A g<sup>−1</sup>. The ex-situ analytical techniques demonstrate that the excellent electrochemical performance of Se@MXene cathode largely arises from structural stability with the assistance of conductive MXene and reversible redox behavior between Li<sub>2</sub>Se and Se during the repeating charge/discharge process. Our study points out the potential of material design of Se cathode based on conducting 2D materials with good electrochemical behavior, which may accelerate the practicability of ASSLSBs.</p></div>","PeriodicalId":100597,"journal":{"name":"Green Energy and Resources","volume":"2 1","pages":"Article 100058"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949720524000122/pdfft?md5=a4fabb0165b50144ff2cfd95ce1cacb8&pid=1-s2.0-S2949720524000122-main.pdf","citationCount":"0","resultStr":"{\"title\":\"High performance all-solid-state Li–Se battery based on selenium loaded on Ti3C2 MXene cathode\",\"authors\":\"Renbo Liu ,&nbsp;Chongxing Li ,&nbsp;Qingyu Li ,&nbsp;Shuxian Zhang ,&nbsp;Chengxiang Wang ,&nbsp;Zhiwei Zhang ,&nbsp;Yuanchang Shi ,&nbsp;Lidong Yang ,&nbsp;Longwei Yin ,&nbsp;Rutao Wang\",\"doi\":\"10.1016/j.gerr.2024.100058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Selenium has high theoretical volumetric capacity of 3253 mAh cm<sup>−3</sup> and acceptable electronic conductivity of 1 × 10<sup>−5</sup> S m<sup>−1</sup>, which is considered as a potential alternative to sulfur cathode for all-solid-state rechargeable batteries with high energy density. However, the development of all-solid-state Li–Se batteries (ASSLSBs) are hindered by sluggish kinetics and poor cycling life. In this work, trigonal Se nanocrystallines are homogenously distributed in the interspace and on the surface of MXene layers (denoted as Se@MXene composite) by a novel melt-diffusion method. ASSLSBs based on this Se@MXene composite cathode exhibit large specific capacity of 632 mAh g<sup>−1</sup> at 0.05 A g<sup>−1</sup>, high-rate capability over 4 A g<sup>−1</sup>, and excellent cycling stability over 300 cycles at 1 A g<sup>−1</sup>. The ex-situ analytical techniques demonstrate that the excellent electrochemical performance of Se@MXene cathode largely arises from structural stability with the assistance of conductive MXene and reversible redox behavior between Li<sub>2</sub>Se and Se during the repeating charge/discharge process. Our study points out the potential of material design of Se cathode based on conducting 2D materials with good electrochemical behavior, which may accelerate the practicability of ASSLSBs.</p></div>\",\"PeriodicalId\":100597,\"journal\":{\"name\":\"Green Energy and Resources\",\"volume\":\"2 1\",\"pages\":\"Article 100058\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949720524000122/pdfft?md5=a4fabb0165b50144ff2cfd95ce1cacb8&pid=1-s2.0-S2949720524000122-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Energy and Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949720524000122\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Energy and Resources","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949720524000122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

硒的理论容积容量高达 3253 mAh cm-3,电子电导率为 1 × 10-5 S m-1,可作为硫阴极的潜在替代品,用于高能量密度的全固态充电电池。然而,全固态锂-硒电池(ASSLSBs)的发展受到了动力学缓慢和循环寿命短的阻碍。在这项研究中,通过一种新颖的熔融扩散方法,三棱态 Se 纳米晶均匀地分布在 MXene 层的间隙和表面(称为 Se@MXene 复合材料)。基于这种 Se@MXene 复合阴极的 ASSLSBs 在 0.05 A g-1 的条件下显示出 632 mAh g-1 的大比容量、超过 4 A g-1 的高速率能力以及在 1 A g-1 条件下超过 300 个循环的优异循环稳定性。原位分析技术表明,Se@MXene 阴极优异的电化学性能主要源于导电 MXene 辅助下的结构稳定性,以及重复充放电过程中 Li2Se 和 Se 之间的可逆氧化还原行为。我们的研究指出了基于具有良好电化学行为的导电二维材料设计 Se 阴极的潜力,这可能会加速 ASSLSBs 的实用化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High performance all-solid-state Li–Se battery based on selenium loaded on Ti3C2 MXene cathode

Selenium has high theoretical volumetric capacity of 3253 mAh cm−3 and acceptable electronic conductivity of 1 × 10−5 S m−1, which is considered as a potential alternative to sulfur cathode for all-solid-state rechargeable batteries with high energy density. However, the development of all-solid-state Li–Se batteries (ASSLSBs) are hindered by sluggish kinetics and poor cycling life. In this work, trigonal Se nanocrystallines are homogenously distributed in the interspace and on the surface of MXene layers (denoted as Se@MXene composite) by a novel melt-diffusion method. ASSLSBs based on this Se@MXene composite cathode exhibit large specific capacity of 632 mAh g−1 at 0.05 A g−1, high-rate capability over 4 A g−1, and excellent cycling stability over 300 cycles at 1 A g−1. The ex-situ analytical techniques demonstrate that the excellent electrochemical performance of Se@MXene cathode largely arises from structural stability with the assistance of conductive MXene and reversible redox behavior between Li2Se and Se during the repeating charge/discharge process. Our study points out the potential of material design of Se cathode based on conducting 2D materials with good electrochemical behavior, which may accelerate the practicability of ASSLSBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Parametric study of the decomposition of methane for COx-free H2 and high valued carbon using Ni-based catalyst via machine-learning simulation Potentials and effects of electricity cogeneration via ORC integration in small-scale biomass district heating system Optimal control strategy based on artificial intelligence applied to a continuous dark fermentation reactor for energy recovery from organic wastes Using machine learning methods for long-term technical and economic evaluation of wind power plants Investigation of highly efficient CO2 hydrogenation at ambient conditions using dielectric barrier discharge plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1