{"title":"基于量子博弈的电商物流联盟合作配送激励机制研究","authors":"Liying Zhang, Fujian Chen","doi":"10.1155/2024/2590861","DOIUrl":null,"url":null,"abstract":"Motivating active participation in e-commerce logistics alliances to enhance delivery efficiency and customer satisfaction has long been a societal interest. Leveraging the quantum game theory, this paper develops a model for incentivizing collaboration within these alliances. This model enables theoretical and numerical analysis of members’ strategies and entanglement levels. The findings show that quantum strategies increase members’ profits, achieving Nash equilibriums and Pareto optimal outcomes, outperforming the classical game theory. In addition, the size of quantum entanglement emerges as a critical determinant influencing members’ active participation in collaborative distribution. Strengthening information sharing and aligning interests can enhance entanglement levels among members, making them more inclined to adopt strategies promoting active involvement in collaborative distribution. Moreover, members can adapt their strategies based on the initial entanglement in collaborative distribution, thereby incentivizing participation and reducing ethical risks. In conclusion, through numerical analysis, we present relevant strategies and recommendations for incentivizing collaborative distribution within e-commerce logistics alliances.","PeriodicalId":55177,"journal":{"name":"Discrete Dynamics in Nature and Society","volume":"30 5","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Game-Based Study on the Incentive Mechanism for the Cooperative Distribution of E-Commerce Logistics Alliance\",\"authors\":\"Liying Zhang, Fujian Chen\",\"doi\":\"10.1155/2024/2590861\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Motivating active participation in e-commerce logistics alliances to enhance delivery efficiency and customer satisfaction has long been a societal interest. Leveraging the quantum game theory, this paper develops a model for incentivizing collaboration within these alliances. This model enables theoretical and numerical analysis of members’ strategies and entanglement levels. The findings show that quantum strategies increase members’ profits, achieving Nash equilibriums and Pareto optimal outcomes, outperforming the classical game theory. In addition, the size of quantum entanglement emerges as a critical determinant influencing members’ active participation in collaborative distribution. Strengthening information sharing and aligning interests can enhance entanglement levels among members, making them more inclined to adopt strategies promoting active involvement in collaborative distribution. Moreover, members can adapt their strategies based on the initial entanglement in collaborative distribution, thereby incentivizing participation and reducing ethical risks. In conclusion, through numerical analysis, we present relevant strategies and recommendations for incentivizing collaborative distribution within e-commerce logistics alliances.\",\"PeriodicalId\":55177,\"journal\":{\"name\":\"Discrete Dynamics in Nature and Society\",\"volume\":\"30 5\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Dynamics in Nature and Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/2590861\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Dynamics in Nature and Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/2590861","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Quantum Game-Based Study on the Incentive Mechanism for the Cooperative Distribution of E-Commerce Logistics Alliance
Motivating active participation in e-commerce logistics alliances to enhance delivery efficiency and customer satisfaction has long been a societal interest. Leveraging the quantum game theory, this paper develops a model for incentivizing collaboration within these alliances. This model enables theoretical and numerical analysis of members’ strategies and entanglement levels. The findings show that quantum strategies increase members’ profits, achieving Nash equilibriums and Pareto optimal outcomes, outperforming the classical game theory. In addition, the size of quantum entanglement emerges as a critical determinant influencing members’ active participation in collaborative distribution. Strengthening information sharing and aligning interests can enhance entanglement levels among members, making them more inclined to adopt strategies promoting active involvement in collaborative distribution. Moreover, members can adapt their strategies based on the initial entanglement in collaborative distribution, thereby incentivizing participation and reducing ethical risks. In conclusion, through numerical analysis, we present relevant strategies and recommendations for incentivizing collaborative distribution within e-commerce logistics alliances.
期刊介绍:
The main objective of Discrete Dynamics in Nature and Society is to foster links between basic and applied research relating to discrete dynamics of complex systems encountered in the natural and social sciences. The journal intends to stimulate publications directed to the analyses of computer generated solutions and chaotic in particular, correctness of numerical procedures, chaos synchronization and control, discrete optimization methods among other related topics. The journal provides a channel of communication between scientists and practitioners working in the field of complex systems analysis and will stimulate the development and use of discrete dynamical approach.