利用现场学习功能改造边缘硬件

Peng Yao, Bin Gao, Huaqiang Wu
{"title":"利用现场学习功能改造边缘硬件","authors":"Peng Yao, Bin Gao, Huaqiang Wu","doi":"10.1038/s44287-024-00031-y","DOIUrl":null,"url":null,"abstract":"Memristor devices have shown notable superiority in the realm of neuromorphic computing chips, particularly in artificial intelligence (AI) inference tasks. Researchers are now grappling with the intricacies of incorporating in situ learning capabilities into memristor-based chips, paving the way for more powerful edge intelligence.","PeriodicalId":501701,"journal":{"name":"Nature Reviews Electrical Engineering","volume":"1 3","pages":"141-142"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transforming edge hardware with in situ learning features\",\"authors\":\"Peng Yao, Bin Gao, Huaqiang Wu\",\"doi\":\"10.1038/s44287-024-00031-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Memristor devices have shown notable superiority in the realm of neuromorphic computing chips, particularly in artificial intelligence (AI) inference tasks. Researchers are now grappling with the intricacies of incorporating in situ learning capabilities into memristor-based chips, paving the way for more powerful edge intelligence.\",\"PeriodicalId\":501701,\"journal\":{\"name\":\"Nature Reviews Electrical Engineering\",\"volume\":\"1 3\",\"pages\":\"141-142\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Reviews Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44287-024-00031-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44287-024-00031-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在神经形态计算芯片领域,尤其是在人工智能(AI)推理任务方面,忆阻器设备已显示出明显的优势。目前,研究人员正在研究如何将原位学习功能融入基于晶闸管的芯片,为实现更强大的边缘智能铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transforming edge hardware with in situ learning features
Memristor devices have shown notable superiority in the realm of neuromorphic computing chips, particularly in artificial intelligence (AI) inference tasks. Researchers are now grappling with the intricacies of incorporating in situ learning capabilities into memristor-based chips, paving the way for more powerful edge intelligence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The future of 2D spintronics Spintronics for ultra-low-power circuits and systems Spin-transfer torque magnetoresistive random access memory technology status and future directions Perpendicularly magnetized materials for energy-efficient orbitronics Spintronic neural systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1