{"title":"抗碎裂和易碎裂普通薇甘菊品种的碎荚特征差异与木质素的生物合成有关","authors":"Xueming Dong, Jiwei Chen, Qiang Zhou, Dong Luo, Longfa Fang, Wenxian Liu, Zhipeng Liu","doi":"10.1016/j.jia.2024.03.032","DOIUrl":null,"url":null,"abstract":"The common vetch ( L.) is a self-pollinated annual forage legume that is widely distributed worldwide. It has wide adaptability and high nutritional value and is commonly used as an important protein source for livestock feed. However, pod shattering seriously limits the yield of common vetch. To clarify the mechanism of pod shattering in common vetch, the pod walls of three shattering-resistant (SR) accessions (B65, B135, and B392) and three shattering-susceptible (SS) accessions (L33, L170, and L461) were selected for transcriptome sequencing. A total of 17190 differentially expressed genes (DEGs) were identified in the pod wall of B135 and L461 common vetch at 5, 10, 15, 20, and 25 days after anthesis. KEGG analysis showed that “phenylpropanoid biosynthesis” was the most significantly enriched pathway, and 40 structural genes associated with lignin biosynthesis were identified and differentially expressed in B135 and L461 common vetch. We analysed the DEGs in the pod wall of three SR and three SS accessions at 15 days after anthesis, and most of the DEGs were consistent with the significant enrichment pathways identified in B135 and L461 common vetch. The total lignin content of SR accessions was significantly lower than the SS accessions. The present study lays a foundation for understanding the molecular regulatory mechanism of pod shattering related to lignin biosynthesis in common vetch and provides reference functional genes for breeders to further cultivate shattering-resistant common vetch varieties.","PeriodicalId":16305,"journal":{"name":"Journal of Integrative Agriculture","volume":"85 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pod-shattering characteristic differences between shattering-resistant and shattering-susceptible common vetch accessions are associated with lignin biosynthesis\",\"authors\":\"Xueming Dong, Jiwei Chen, Qiang Zhou, Dong Luo, Longfa Fang, Wenxian Liu, Zhipeng Liu\",\"doi\":\"10.1016/j.jia.2024.03.032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The common vetch ( L.) is a self-pollinated annual forage legume that is widely distributed worldwide. It has wide adaptability and high nutritional value and is commonly used as an important protein source for livestock feed. However, pod shattering seriously limits the yield of common vetch. To clarify the mechanism of pod shattering in common vetch, the pod walls of three shattering-resistant (SR) accessions (B65, B135, and B392) and three shattering-susceptible (SS) accessions (L33, L170, and L461) were selected for transcriptome sequencing. A total of 17190 differentially expressed genes (DEGs) were identified in the pod wall of B135 and L461 common vetch at 5, 10, 15, 20, and 25 days after anthesis. KEGG analysis showed that “phenylpropanoid biosynthesis” was the most significantly enriched pathway, and 40 structural genes associated with lignin biosynthesis were identified and differentially expressed in B135 and L461 common vetch. We analysed the DEGs in the pod wall of three SR and three SS accessions at 15 days after anthesis, and most of the DEGs were consistent with the significant enrichment pathways identified in B135 and L461 common vetch. The total lignin content of SR accessions was significantly lower than the SS accessions. The present study lays a foundation for understanding the molecular regulatory mechanism of pod shattering related to lignin biosynthesis in common vetch and provides reference functional genes for breeders to further cultivate shattering-resistant common vetch varieties.\",\"PeriodicalId\":16305,\"journal\":{\"name\":\"Journal of Integrative Agriculture\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integrative Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jia.2024.03.032\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrative Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.jia.2024.03.032","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
Pod-shattering characteristic differences between shattering-resistant and shattering-susceptible common vetch accessions are associated with lignin biosynthesis
The common vetch ( L.) is a self-pollinated annual forage legume that is widely distributed worldwide. It has wide adaptability and high nutritional value and is commonly used as an important protein source for livestock feed. However, pod shattering seriously limits the yield of common vetch. To clarify the mechanism of pod shattering in common vetch, the pod walls of three shattering-resistant (SR) accessions (B65, B135, and B392) and three shattering-susceptible (SS) accessions (L33, L170, and L461) were selected for transcriptome sequencing. A total of 17190 differentially expressed genes (DEGs) were identified in the pod wall of B135 and L461 common vetch at 5, 10, 15, 20, and 25 days after anthesis. KEGG analysis showed that “phenylpropanoid biosynthesis” was the most significantly enriched pathway, and 40 structural genes associated with lignin biosynthesis were identified and differentially expressed in B135 and L461 common vetch. We analysed the DEGs in the pod wall of three SR and three SS accessions at 15 days after anthesis, and most of the DEGs were consistent with the significant enrichment pathways identified in B135 and L461 common vetch. The total lignin content of SR accessions was significantly lower than the SS accessions. The present study lays a foundation for understanding the molecular regulatory mechanism of pod shattering related to lignin biosynthesis in common vetch and provides reference functional genes for breeders to further cultivate shattering-resistant common vetch varieties.
期刊介绍:
Journal of Integrative Agriculture publishes manuscripts in the categories of Commentary, Review, Research Article, Letter and Short Communication, focusing on the core subjects: Crop Genetics & Breeding, Germplasm Resources, Physiology, Biochemistry, Cultivation, Tillage, Plant Protection, Animal Science, Veterinary Science, Soil and Fertilization, Irrigation, Plant Nutrition, Agro-Environment & Ecology, Bio-material and Bio-energy, Food Science, Agricultural Economics and Management, Agricultural Information Science.