人类多能干细胞衍生肾脏器官组织:当前的进展与挑战。

IF 3.6 3区 医学 Q3 CELL & TISSUE ENGINEERING World journal of stem cells Pub Date : 2024-02-26 DOI:10.4252/wjsc.v16.i2.114
Hong-Yan Long, Zu-Ping Qian, Qin Lan, Yong-Jie Xu, Jing-Jing Da, Fu-Xun Yu, Yan Zha
{"title":"人类多能干细胞衍生肾脏器官组织:当前的进展与挑战。","authors":"Hong-Yan Long, Zu-Ping Qian, Qin Lan, Yong-Jie Xu, Jing-Jing Da, Fu-Xun Yu, Yan Zha","doi":"10.4252/wjsc.v16.i2.114","DOIUrl":null,"url":null,"abstract":"<p><p>Human pluripotent stem cell (hPSC)-derived kidney organoids share similarities with the fetal kidney. However, the current hPSC-derived kidney organoids have some limitations, including the inability to perform nephrogenesis and lack of a corticomedullary definition, uniform vascular system, and coordinated exit pathway for urinary filtrate. Therefore, further studies are required to produce hPSC-derived kidney organoids that accurately mimic human kidneys to facilitate research on kidney development, regeneration, disease modeling, and drug screening. In this review, we discussed recent advances in the generation of hPSC-derived kidney organoids, how these organoids contribute to the understanding of human kidney development and research in disease modeling. Additionally, the limitations, future research focus, and applications of hPSC-derived kidney organoids were highlighted.</p>","PeriodicalId":23775,"journal":{"name":"World journal of stem cells","volume":"16 2","pages":"114-125"},"PeriodicalIF":3.6000,"publicationDate":"2024-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10915962/pdf/","citationCount":"0","resultStr":"{\"title\":\"Human pluripotent stem cell-derived kidney organoids: Current progress and challenges.\",\"authors\":\"Hong-Yan Long, Zu-Ping Qian, Qin Lan, Yong-Jie Xu, Jing-Jing Da, Fu-Xun Yu, Yan Zha\",\"doi\":\"10.4252/wjsc.v16.i2.114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Human pluripotent stem cell (hPSC)-derived kidney organoids share similarities with the fetal kidney. However, the current hPSC-derived kidney organoids have some limitations, including the inability to perform nephrogenesis and lack of a corticomedullary definition, uniform vascular system, and coordinated exit pathway for urinary filtrate. Therefore, further studies are required to produce hPSC-derived kidney organoids that accurately mimic human kidneys to facilitate research on kidney development, regeneration, disease modeling, and drug screening. In this review, we discussed recent advances in the generation of hPSC-derived kidney organoids, how these organoids contribute to the understanding of human kidney development and research in disease modeling. Additionally, the limitations, future research focus, and applications of hPSC-derived kidney organoids were highlighted.</p>\",\"PeriodicalId\":23775,\"journal\":{\"name\":\"World journal of stem cells\",\"volume\":\"16 2\",\"pages\":\"114-125\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10915962/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of stem cells\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4252/wjsc.v16.i2.114\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of stem cells","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4252/wjsc.v16.i2.114","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

人多能干细胞(hPSC)衍生的肾脏器官组织与胎儿肾脏有相似之处。然而,目前的hPSC衍生肾脏器官组织有一些局限性,包括不能进行肾脏生成,缺乏皮质髓质定义、统一的血管系统和协调的尿滤液出口途径。因此,还需要进一步研究,以产生能准确模拟人类肾脏的 hPSC 衍生肾脏器官组织,从而促进肾脏发育、再生、疾病建模和药物筛选方面的研究。在这篇综述中,我们讨论了在生成 hPSC 衍生肾脏器官组织方面的最新进展,以及这些器官组织如何促进对人类肾脏发育和疾病建模研究的理解。此外,还强调了 hPSC 衍生肾脏器官组织的局限性、未来研究重点和应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Human pluripotent stem cell-derived kidney organoids: Current progress and challenges.

Human pluripotent stem cell (hPSC)-derived kidney organoids share similarities with the fetal kidney. However, the current hPSC-derived kidney organoids have some limitations, including the inability to perform nephrogenesis and lack of a corticomedullary definition, uniform vascular system, and coordinated exit pathway for urinary filtrate. Therefore, further studies are required to produce hPSC-derived kidney organoids that accurately mimic human kidneys to facilitate research on kidney development, regeneration, disease modeling, and drug screening. In this review, we discussed recent advances in the generation of hPSC-derived kidney organoids, how these organoids contribute to the understanding of human kidney development and research in disease modeling. Additionally, the limitations, future research focus, and applications of hPSC-derived kidney organoids were highlighted.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
World journal of stem cells
World journal of stem cells Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
7.80
自引率
4.90%
发文量
750
期刊介绍: The World Journal of Stem Cells (WJSC) is a leading academic journal devoted to reporting the latest, cutting-edge research progress and findings of basic research and clinical practice in the field of stem cells. It was launched on December 31, 2009 and is published monthly (12 issues annually) by BPG, the world''s leading professional clinical medical journal publishing company.
期刊最新文献
Gamma-aminobutyric acid enhances miR-21-5p loading into adipose-derived stem cell extracellular vesicles to alleviate myocardial ischemia-reperfusion injury via TXNIP regulation. Bioengineering breakthroughs: The impact of stem cell models on advanced therapy medicinal product development. Emergence of the stromal vascular fraction and secretome in regenerative medicine. Enhancing the functionality of mesenchymal stem cells: An attractive treatment strategy for metabolic dysfunction-associated steatotic liver disease? Innovative mesenchymal stem cell treatments for fatty liver disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1