Haijun Ruan , Niall Kirkaldy , Gregory J. Offer , Billy Wu
{"title":"利用可解释深度学习和部分充电数据诊断复合电池电极的健康状况","authors":"Haijun Ruan , Niall Kirkaldy , Gregory J. Offer , Billy Wu","doi":"10.1016/j.egyai.2024.100352","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium-ion batteries with composite anodes of graphite and silicon are increasingly being used. However, their degradation pathways are complicated due to the blended nature of the electrodes, with graphite and silicon degrading at different rates. Here, we develop a deep learning health diagnostic framework to rapidly quantify and separate the different degradation rates of graphite and silicon in composite anodes using partial charging data. The convolutional neural network (CNN), trained with synthetic data, uses experimental partial charging data to diagnose electrode-level health of tested batteries, with errors of less than 3.1% (corresponding to the loss of active material reaching ∼75%). Sensitivity analysis of the capacity-voltage curve under different degradation modes is performed to provide a physically informed voltage window for diagnostics with partial charging data. By using the gradient-weighted class activation mapping approach, we provide explainable insights into how these CNNs work; highlighting regions of the voltage-curve to which they are most sensitive. Robustness is validated by introducing noise to the data, with no significant negative impact on the diagnostic accuracy for noise levels below 10 mV, thus highlighting the potential for deep learning approaches in the diagnostics of lithium-ion battery performance under real-world conditions. The framework presented here can be generalised to other cell formats and chemistries, providing robust and explainable battery diagnostics for both conventional single material electrodes, but also the more challenging composite electrodes.</p></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"16 ","pages":"Article 100352"},"PeriodicalIF":9.6000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666546824000181/pdfft?md5=af26ff78ede8c951359b33ae603e5c39&pid=1-s2.0-S2666546824000181-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Diagnosing health in composite battery electrodes with explainable deep learning and partial charging data\",\"authors\":\"Haijun Ruan , Niall Kirkaldy , Gregory J. Offer , Billy Wu\",\"doi\":\"10.1016/j.egyai.2024.100352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lithium-ion batteries with composite anodes of graphite and silicon are increasingly being used. However, their degradation pathways are complicated due to the blended nature of the electrodes, with graphite and silicon degrading at different rates. Here, we develop a deep learning health diagnostic framework to rapidly quantify and separate the different degradation rates of graphite and silicon in composite anodes using partial charging data. The convolutional neural network (CNN), trained with synthetic data, uses experimental partial charging data to diagnose electrode-level health of tested batteries, with errors of less than 3.1% (corresponding to the loss of active material reaching ∼75%). Sensitivity analysis of the capacity-voltage curve under different degradation modes is performed to provide a physically informed voltage window for diagnostics with partial charging data. By using the gradient-weighted class activation mapping approach, we provide explainable insights into how these CNNs work; highlighting regions of the voltage-curve to which they are most sensitive. Robustness is validated by introducing noise to the data, with no significant negative impact on the diagnostic accuracy for noise levels below 10 mV, thus highlighting the potential for deep learning approaches in the diagnostics of lithium-ion battery performance under real-world conditions. The framework presented here can be generalised to other cell formats and chemistries, providing robust and explainable battery diagnostics for both conventional single material electrodes, but also the more challenging composite electrodes.</p></div>\",\"PeriodicalId\":34138,\"journal\":{\"name\":\"Energy and AI\",\"volume\":\"16 \",\"pages\":\"Article 100352\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666546824000181/pdfft?md5=af26ff78ede8c951359b33ae603e5c39&pid=1-s2.0-S2666546824000181-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy and AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666546824000181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546824000181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Diagnosing health in composite battery electrodes with explainable deep learning and partial charging data
Lithium-ion batteries with composite anodes of graphite and silicon are increasingly being used. However, their degradation pathways are complicated due to the blended nature of the electrodes, with graphite and silicon degrading at different rates. Here, we develop a deep learning health diagnostic framework to rapidly quantify and separate the different degradation rates of graphite and silicon in composite anodes using partial charging data. The convolutional neural network (CNN), trained with synthetic data, uses experimental partial charging data to diagnose electrode-level health of tested batteries, with errors of less than 3.1% (corresponding to the loss of active material reaching ∼75%). Sensitivity analysis of the capacity-voltage curve under different degradation modes is performed to provide a physically informed voltage window for diagnostics with partial charging data. By using the gradient-weighted class activation mapping approach, we provide explainable insights into how these CNNs work; highlighting regions of the voltage-curve to which they are most sensitive. Robustness is validated by introducing noise to the data, with no significant negative impact on the diagnostic accuracy for noise levels below 10 mV, thus highlighting the potential for deep learning approaches in the diagnostics of lithium-ion battery performance under real-world conditions. The framework presented here can be generalised to other cell formats and chemistries, providing robust and explainable battery diagnostics for both conventional single material electrodes, but also the more challenging composite electrodes.