Hwajoong Kim, Hyunbin Na, Seungbeom Noh, Shinwon Chang, Jinho Kim, Taejune Kong, Gyowook Shin, Chankyu Lee, Seonggyu Lee, Yong-Lae Park, Sehoon Oh, Jaehong Lee
{"title":"用于反馈控制软致动器的固有集成微纤维柔性本体感觉传感器","authors":"Hwajoong Kim, Hyunbin Na, Seungbeom Noh, Shinwon Chang, Jinho Kim, Taejune Kong, Gyowook Shin, Chankyu Lee, Seonggyu Lee, Yong-Lae Park, Sehoon Oh, Jaehong Lee","doi":"10.1038/s41528-024-00302-6","DOIUrl":null,"url":null,"abstract":"For the accurate and continuous control of soft actuators in dynamic environments, the movements of the soft actuators must be monitored in real-time. To this end, various soft actuators capable of self-monitoring have been developed by separately integrating sensing devices into actuators. However, integrating such heterogeneous sensing components into soft actuators results in structural complexity, high manufacturing costs, and poor interfacial stability. Here, we report on intelligent pneumatic fiber-reinforced soft actuators with an inherent flexible proprioceptive sensor that uses only the essential components of typical fiber-reinforced soft actuators. The inherent flexible proprioceptive sensor is achieved by leveraging two parallel conductive microfibers around an elastomeric chamber of the soft actuator, which simultaneously acts as both a capacitive bending sensor and radial expansion limiting fibers of typical fiber-reinforced soft actuators. The proprioceptive soft actuator exhibits excellent mechanical actuation up to 240° bending motion and proprioceptive sensing performance with high sensitivity of 1.2 pF rad−1. Mathematical analysis and simulations of the soft actuator can effectively predict the bending actuation and capacitive responses against input pressures. We demonstrate that proprioceptive soft actuators can be used to construct a soft gripping system and prosthetic hand which express various hand gestures and perform dexterous manipulation with real-time proprioceptive sensing capability.","PeriodicalId":48528,"journal":{"name":"npj Flexible Electronics","volume":" ","pages":"1-14"},"PeriodicalIF":12.3000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41528-024-00302-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Inherently integrated microfiber-based flexible proprioceptive sensor for feedback-controlled soft actuators\",\"authors\":\"Hwajoong Kim, Hyunbin Na, Seungbeom Noh, Shinwon Chang, Jinho Kim, Taejune Kong, Gyowook Shin, Chankyu Lee, Seonggyu Lee, Yong-Lae Park, Sehoon Oh, Jaehong Lee\",\"doi\":\"10.1038/s41528-024-00302-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the accurate and continuous control of soft actuators in dynamic environments, the movements of the soft actuators must be monitored in real-time. To this end, various soft actuators capable of self-monitoring have been developed by separately integrating sensing devices into actuators. However, integrating such heterogeneous sensing components into soft actuators results in structural complexity, high manufacturing costs, and poor interfacial stability. Here, we report on intelligent pneumatic fiber-reinforced soft actuators with an inherent flexible proprioceptive sensor that uses only the essential components of typical fiber-reinforced soft actuators. The inherent flexible proprioceptive sensor is achieved by leveraging two parallel conductive microfibers around an elastomeric chamber of the soft actuator, which simultaneously acts as both a capacitive bending sensor and radial expansion limiting fibers of typical fiber-reinforced soft actuators. The proprioceptive soft actuator exhibits excellent mechanical actuation up to 240° bending motion and proprioceptive sensing performance with high sensitivity of 1.2 pF rad−1. Mathematical analysis and simulations of the soft actuator can effectively predict the bending actuation and capacitive responses against input pressures. We demonstrate that proprioceptive soft actuators can be used to construct a soft gripping system and prosthetic hand which express various hand gestures and perform dexterous manipulation with real-time proprioceptive sensing capability.\",\"PeriodicalId\":48528,\"journal\":{\"name\":\"npj Flexible Electronics\",\"volume\":\" \",\"pages\":\"1-14\"},\"PeriodicalIF\":12.3000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41528-024-00302-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Flexible Electronics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.nature.com/articles/s41528-024-00302-6\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Flexible Electronics","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41528-024-00302-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Inherently integrated microfiber-based flexible proprioceptive sensor for feedback-controlled soft actuators
For the accurate and continuous control of soft actuators in dynamic environments, the movements of the soft actuators must be monitored in real-time. To this end, various soft actuators capable of self-monitoring have been developed by separately integrating sensing devices into actuators. However, integrating such heterogeneous sensing components into soft actuators results in structural complexity, high manufacturing costs, and poor interfacial stability. Here, we report on intelligent pneumatic fiber-reinforced soft actuators with an inherent flexible proprioceptive sensor that uses only the essential components of typical fiber-reinforced soft actuators. The inherent flexible proprioceptive sensor is achieved by leveraging two parallel conductive microfibers around an elastomeric chamber of the soft actuator, which simultaneously acts as both a capacitive bending sensor and radial expansion limiting fibers of typical fiber-reinforced soft actuators. The proprioceptive soft actuator exhibits excellent mechanical actuation up to 240° bending motion and proprioceptive sensing performance with high sensitivity of 1.2 pF rad−1. Mathematical analysis and simulations of the soft actuator can effectively predict the bending actuation and capacitive responses against input pressures. We demonstrate that proprioceptive soft actuators can be used to construct a soft gripping system and prosthetic hand which express various hand gestures and perform dexterous manipulation with real-time proprioceptive sensing capability.
期刊介绍:
npj Flexible Electronics is an online-only and open access journal, which publishes high-quality papers related to flexible electronic systems, including plastic electronics and emerging materials, new device design and fabrication technologies, and applications.