自我监督的双方图表示学习:一种 Dirichlet 最大边际矩阵因式分解方法

IF 7.2 4区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE ACM Transactions on Intelligent Systems and Technology Pub Date : 2024-03-08 DOI:10.1145/3645098
Shenghai Zhong, Shu Guo, Jing Liu, Hongren Huang, Lihong Wang, Jianxin Li, Chen Li, Yiming Hei
{"title":"自我监督的双方图表示学习:一种 Dirichlet 最大边际矩阵因式分解方法","authors":"Shenghai Zhong, Shu Guo, Jing Liu, Hongren Huang, Lihong Wang, Jianxin Li, Chen Li, Yiming Hei","doi":"10.1145/3645098","DOIUrl":null,"url":null,"abstract":"<p>Bipartite graph representation learning aims to obtain node embeddings by compressing sparse vectorized representations of interactions between two types of nodes, e.g., users and items. Incorporating structural attributes among homogeneous nodes, such as user communities, improves the identification of similar interaction preferences, namely, user/item embeddings, for downstream tasks. However, existing methods often fail to proactively discover and fully utilize these latent structural attributes. Moreover, the manual collection and labeling of structural attributes is always costly. In this paper, we propose a novel approach called Dirichlet Max-margin Matrix Factorization (DM3F), which adopts a self-supervised strategy to discover latent structural attributes and model discriminative node representations. Specifically, in self-supervised learning, our approach generates pseudo group labels (i.e., structural attributes) as a supervised signal using the Dirichlet process without relying on manual collection and labeling, and employs them in a max-margin classification. Additionally, we introduce a Variational Markov Chain Monte Carlo algorithm (Variational MCMC) to effectively update the parameters. The experimental results on six real datasets demonstrate that, in the majority of cases, the proposed method outperforms existing approaches based on matrix factorization and neural networks. Furthermore, the modularity analysis confirms the effectiveness of our model in capturing structural attributes to produce high-quality user embeddings.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-supervised Bipartite Graph Representation Learning: A Dirichlet Max-margin Matrix Factorization Approach\",\"authors\":\"Shenghai Zhong, Shu Guo, Jing Liu, Hongren Huang, Lihong Wang, Jianxin Li, Chen Li, Yiming Hei\",\"doi\":\"10.1145/3645098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Bipartite graph representation learning aims to obtain node embeddings by compressing sparse vectorized representations of interactions between two types of nodes, e.g., users and items. Incorporating structural attributes among homogeneous nodes, such as user communities, improves the identification of similar interaction preferences, namely, user/item embeddings, for downstream tasks. However, existing methods often fail to proactively discover and fully utilize these latent structural attributes. Moreover, the manual collection and labeling of structural attributes is always costly. In this paper, we propose a novel approach called Dirichlet Max-margin Matrix Factorization (DM3F), which adopts a self-supervised strategy to discover latent structural attributes and model discriminative node representations. Specifically, in self-supervised learning, our approach generates pseudo group labels (i.e., structural attributes) as a supervised signal using the Dirichlet process without relying on manual collection and labeling, and employs them in a max-margin classification. Additionally, we introduce a Variational Markov Chain Monte Carlo algorithm (Variational MCMC) to effectively update the parameters. The experimental results on six real datasets demonstrate that, in the majority of cases, the proposed method outperforms existing approaches based on matrix factorization and neural networks. Furthermore, the modularity analysis confirms the effectiveness of our model in capturing structural attributes to produce high-quality user embeddings.</p>\",\"PeriodicalId\":48967,\"journal\":{\"name\":\"ACM Transactions on Intelligent Systems and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Intelligent Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3645098\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3645098","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

双向图表示学习旨在通过压缩两类节点(如用户和物品)之间交互的稀疏向量表示来获得节点嵌入。将用户社区等同类节点之间的结构属性纳入其中,可提高下游任务对类似交互偏好(即用户/物品嵌入)的识别能力。然而,现有的方法往往无法主动发现和充分利用这些潜在的结构属性。此外,手动收集和标注结构属性总是成本高昂。在本文中,我们提出了一种名为 "Dirichlet Max-margin Matrix Factorization"(DM3F)的新方法,该方法采用自我监督策略来发现潜在结构属性并对节点表征进行判别建模。具体来说,在自我监督学习中,我们的方法利用 Dirichlet 过程生成伪组标签(即结构属性)作为监督信号,而无需依赖人工收集和标记,并将其用于最大边际分类。此外,我们还引入了变异马尔可夫链蒙特卡罗算法(Variational Markov Chain Monte Carlo algorithm,Variational MCMC)来有效更新参数。在六个真实数据集上的实验结果表明,在大多数情况下,所提出的方法优于现有的基于矩阵因式分解和神经网络的方法。此外,模块化分析证实了我们的模型在捕捉结构属性以生成高质量用户嵌入方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-supervised Bipartite Graph Representation Learning: A Dirichlet Max-margin Matrix Factorization Approach

Bipartite graph representation learning aims to obtain node embeddings by compressing sparse vectorized representations of interactions between two types of nodes, e.g., users and items. Incorporating structural attributes among homogeneous nodes, such as user communities, improves the identification of similar interaction preferences, namely, user/item embeddings, for downstream tasks. However, existing methods often fail to proactively discover and fully utilize these latent structural attributes. Moreover, the manual collection and labeling of structural attributes is always costly. In this paper, we propose a novel approach called Dirichlet Max-margin Matrix Factorization (DM3F), which adopts a self-supervised strategy to discover latent structural attributes and model discriminative node representations. Specifically, in self-supervised learning, our approach generates pseudo group labels (i.e., structural attributes) as a supervised signal using the Dirichlet process without relying on manual collection and labeling, and employs them in a max-margin classification. Additionally, we introduce a Variational Markov Chain Monte Carlo algorithm (Variational MCMC) to effectively update the parameters. The experimental results on six real datasets demonstrate that, in the majority of cases, the proposed method outperforms existing approaches based on matrix factorization and neural networks. Furthermore, the modularity analysis confirms the effectiveness of our model in capturing structural attributes to produce high-quality user embeddings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Intelligent Systems and Technology
ACM Transactions on Intelligent Systems and Technology COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, INFORMATION SYSTEMS
CiteScore
9.30
自引率
2.00%
发文量
131
期刊介绍: ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world. ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.
期刊最新文献
A Survey of Trustworthy Federated Learning: Issues, Solutions, and Challenges DeepSneak: User GPS Trajectory Reconstruction from Federated Route Recommendation Models WC-SBERT: Zero-Shot Topic Classification Using SBERT and Light Self-Training on Wikipedia Categories Self-supervised Text Style Transfer using Cycle-Consistent Adversarial Networks Federated Learning Survey: A Multi-Level Taxonomy of Aggregation Techniques, Experimental Insights, and Future Frontiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1