全氟和多氟烷基物质 (PFAS) 检测的最新进展:重要小综述

IF 6.5 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Sensors and Actuators Reports Pub Date : 2024-03-01 DOI:10.1016/j.snr.2024.100189
Dorian Thompson , Niloofar Zolfigol , Zehui Xia , Yu Lei
{"title":"全氟和多氟烷基物质 (PFAS) 检测的最新进展:重要小综述","authors":"Dorian Thompson ,&nbsp;Niloofar Zolfigol ,&nbsp;Zehui Xia ,&nbsp;Yu Lei","doi":"10.1016/j.snr.2024.100189","DOIUrl":null,"url":null,"abstract":"<div><p>Per- and polyfluoroalkyl substances (PFAS) are a class of fluorinated pollutants found widely in numerous industrial and consumer products. Their excellent heat, oil, and water resistance and slow degradation rate in nature lead to their persistent environmental accumulation with potential adverse impacts on various organisms, including humans. Although the current EPA-approved PFAS detection method is elegant and ultrasensitive, its broader application is greatly limited due to the associated high costs, lengthy detection times, and skilled personnel requirements. Hence, there is a strong demand for rapid, robust, low-cost, and accessible PFAS detection methods to expedite the treatment of contaminated media and control exposure to these emerging substances. Since the publication of our first PFAS sensing review in 2021, numerous new PFAS sensors have been developed and reported. Consequently, this critical review primarily focuses on recent advancements in PFAS sensing platforms, encompassing optical-based, electrochemical-based, and other novel sensing principle-based systems, as well as those that complement liquid chromatography coupled with tandem mass spectrometry, the gold standard for PFAS detection. The underlying detection mechanisms, sensing performances, and potential areas for improvement are thoroughly discussed. We hope that this article offers readers a review of alternative PFAS detection systems developed in recent years and inspires future innovations in field-deployable PFAS sensing technology.</p></div>","PeriodicalId":426,"journal":{"name":"Sensors and Actuators Reports","volume":"7 ","pages":"Article 100189"},"PeriodicalIF":6.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666053924000055/pdfft?md5=fe77429733566de3e62932f7d29854cb&pid=1-s2.0-S2666053924000055-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Recent progress in per- and polyfluoroalkyl substances (PFAS) sensing: A critical mini-review\",\"authors\":\"Dorian Thompson ,&nbsp;Niloofar Zolfigol ,&nbsp;Zehui Xia ,&nbsp;Yu Lei\",\"doi\":\"10.1016/j.snr.2024.100189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Per- and polyfluoroalkyl substances (PFAS) are a class of fluorinated pollutants found widely in numerous industrial and consumer products. Their excellent heat, oil, and water resistance and slow degradation rate in nature lead to their persistent environmental accumulation with potential adverse impacts on various organisms, including humans. Although the current EPA-approved PFAS detection method is elegant and ultrasensitive, its broader application is greatly limited due to the associated high costs, lengthy detection times, and skilled personnel requirements. Hence, there is a strong demand for rapid, robust, low-cost, and accessible PFAS detection methods to expedite the treatment of contaminated media and control exposure to these emerging substances. Since the publication of our first PFAS sensing review in 2021, numerous new PFAS sensors have been developed and reported. Consequently, this critical review primarily focuses on recent advancements in PFAS sensing platforms, encompassing optical-based, electrochemical-based, and other novel sensing principle-based systems, as well as those that complement liquid chromatography coupled with tandem mass spectrometry, the gold standard for PFAS detection. The underlying detection mechanisms, sensing performances, and potential areas for improvement are thoroughly discussed. We hope that this article offers readers a review of alternative PFAS detection systems developed in recent years and inspires future innovations in field-deployable PFAS sensing technology.</p></div>\",\"PeriodicalId\":426,\"journal\":{\"name\":\"Sensors and Actuators Reports\",\"volume\":\"7 \",\"pages\":\"Article 100189\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666053924000055/pdfft?md5=fe77429733566de3e62932f7d29854cb&pid=1-s2.0-S2666053924000055-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666053924000055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666053924000055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

[显示省略]
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent progress in per- and polyfluoroalkyl substances (PFAS) sensing: A critical mini-review

Per- and polyfluoroalkyl substances (PFAS) are a class of fluorinated pollutants found widely in numerous industrial and consumer products. Their excellent heat, oil, and water resistance and slow degradation rate in nature lead to their persistent environmental accumulation with potential adverse impacts on various organisms, including humans. Although the current EPA-approved PFAS detection method is elegant and ultrasensitive, its broader application is greatly limited due to the associated high costs, lengthy detection times, and skilled personnel requirements. Hence, there is a strong demand for rapid, robust, low-cost, and accessible PFAS detection methods to expedite the treatment of contaminated media and control exposure to these emerging substances. Since the publication of our first PFAS sensing review in 2021, numerous new PFAS sensors have been developed and reported. Consequently, this critical review primarily focuses on recent advancements in PFAS sensing platforms, encompassing optical-based, electrochemical-based, and other novel sensing principle-based systems, as well as those that complement liquid chromatography coupled with tandem mass spectrometry, the gold standard for PFAS detection. The underlying detection mechanisms, sensing performances, and potential areas for improvement are thoroughly discussed. We hope that this article offers readers a review of alternative PFAS detection systems developed in recent years and inspires future innovations in field-deployable PFAS sensing technology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.60
自引率
0.00%
发文量
60
审稿时长
49 days
期刊介绍: Sensors and Actuators Reports is a peer-reviewed open access journal launched out from the Sensors and Actuators journal family. Sensors and Actuators Reports is dedicated to publishing new and original works in the field of all type of sensors and actuators, including bio-, chemical-, physical-, and nano- sensors and actuators, which demonstrates significant progress beyond the current state of the art. The journal regularly publishes original research papers, reviews, and short communications. For research papers and short communications, the journal aims to publish the new and original work supported by experimental results and as such purely theoretical works are not accepted.
期刊最新文献
A highly sensitive microfluidic biosensor for rapid and accurate detection of Salmonella in raw chicken products Enhancing nitrous oxide chemiresistive sensing performance by reducing ionic Oxygen species adsorption in Gold functionalized Tungsten Trioxide nanofibers Critical review of hydrogen cyanide (HCN) sensors and their applications 1D supramolecular assembly-induced emission and colorimetry toward precise onsite mercury(II) detection Rapid detection of human adenovirus by multiple cross displacement amplification combined with nanoparticle-based biosensor platform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1