Friso G. Heslinga, Faruk Uysal, Sabina B. van Rooij, Sven Berberich, Miguel Caro Cuenca
{"title":"利用合成反合成孔径雷达图像进行卫星特征描述的少量学习","authors":"Friso G. Heslinga, Faruk Uysal, Sabina B. van Rooij, Sven Berberich, Miguel Caro Cuenca","doi":"10.1049/rsn2.12516","DOIUrl":null,"url":null,"abstract":"<p>Space situational awareness systems primarily focus on detecting and tracking space objects, providing crucial positional data. However, understanding the complex space domain requires characterising satellites, often involving estimation of bus and solar panel sizes. While inverse synthetic aperture radar allows satellite visualisation, developing deep learning models for substructure segmentation in inverse synthetic aperture radar images is challenging due to the high costs and hardware requirements. The authors present a framework addressing the scarcity of inverse synthetic aperture radar data through synthetic training data. The authors approach utilises a few-shot domain adaptation technique, leveraging thousands of rapidly simulated low-fidelity inverse synthetic aperture radar images and a small set of inverse synthetic aperture radar images from the target domain. The authors validate their framework by simulating a real-case scenario, fine-tuning a deep learning-based segmentation model using four inverse synthetic aperture radar images generated through the backprojection algorithm from simulated raw radar data (simulated at the analogue-to-digital converter level) as the target domain. The authors results demonstrate the effectiveness of the proposed framework, significantly improving inverse synthetic aperture radar image segmentation across diverse domains. This enhancement enables accurate characterisation of satellite bus and solar panel sizes as well as their orientation, even when the images are sourced from different domains.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"18 4","pages":"649-656"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12516","citationCount":"0","resultStr":"{\"title\":\"Few-shot learning for satellite characterisation from synthetic inverse synthetic aperture radar images\",\"authors\":\"Friso G. Heslinga, Faruk Uysal, Sabina B. van Rooij, Sven Berberich, Miguel Caro Cuenca\",\"doi\":\"10.1049/rsn2.12516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Space situational awareness systems primarily focus on detecting and tracking space objects, providing crucial positional data. However, understanding the complex space domain requires characterising satellites, often involving estimation of bus and solar panel sizes. While inverse synthetic aperture radar allows satellite visualisation, developing deep learning models for substructure segmentation in inverse synthetic aperture radar images is challenging due to the high costs and hardware requirements. The authors present a framework addressing the scarcity of inverse synthetic aperture radar data through synthetic training data. The authors approach utilises a few-shot domain adaptation technique, leveraging thousands of rapidly simulated low-fidelity inverse synthetic aperture radar images and a small set of inverse synthetic aperture radar images from the target domain. The authors validate their framework by simulating a real-case scenario, fine-tuning a deep learning-based segmentation model using four inverse synthetic aperture radar images generated through the backprojection algorithm from simulated raw radar data (simulated at the analogue-to-digital converter level) as the target domain. The authors results demonstrate the effectiveness of the proposed framework, significantly improving inverse synthetic aperture radar image segmentation across diverse domains. This enhancement enables accurate characterisation of satellite bus and solar panel sizes as well as their orientation, even when the images are sourced from different domains.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"18 4\",\"pages\":\"649-656\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.12516\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12516\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/rsn2.12516","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Few-shot learning for satellite characterisation from synthetic inverse synthetic aperture radar images
Space situational awareness systems primarily focus on detecting and tracking space objects, providing crucial positional data. However, understanding the complex space domain requires characterising satellites, often involving estimation of bus and solar panel sizes. While inverse synthetic aperture radar allows satellite visualisation, developing deep learning models for substructure segmentation in inverse synthetic aperture radar images is challenging due to the high costs and hardware requirements. The authors present a framework addressing the scarcity of inverse synthetic aperture radar data through synthetic training data. The authors approach utilises a few-shot domain adaptation technique, leveraging thousands of rapidly simulated low-fidelity inverse synthetic aperture radar images and a small set of inverse synthetic aperture radar images from the target domain. The authors validate their framework by simulating a real-case scenario, fine-tuning a deep learning-based segmentation model using four inverse synthetic aperture radar images generated through the backprojection algorithm from simulated raw radar data (simulated at the analogue-to-digital converter level) as the target domain. The authors results demonstrate the effectiveness of the proposed framework, significantly improving inverse synthetic aperture radar image segmentation across diverse domains. This enhancement enables accurate characterisation of satellite bus and solar panel sizes as well as their orientation, even when the images are sourced from different domains.
期刊介绍:
IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications.
Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.