LoopStructural v1.5.10 中火成岩侵入体的三维地质建模

IF 4 3区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geoscientific Model Development Pub Date : 2024-03-05 DOI:10.5194/gmd-17-1975-2024
Fernanda Alvarado-Neves, L. Aillères, Lachlan Grose, Alexander R. Cruden, R. Armit
{"title":"LoopStructural v1.5.10 中火成岩侵入体的三维地质建模","authors":"Fernanda Alvarado-Neves, L. Aillères, Lachlan Grose, Alexander R. Cruden, R. Armit","doi":"10.5194/gmd-17-1975-2024","DOIUrl":null,"url":null,"abstract":"Abstract. Over the last 2 decades, there have been significant advances in the 3D modelling of geological structures via the incorporation of geological knowledge into the model algorithms. These methods take advantage of different structural data types and do not require manual processing, making them robust and objective. Igneous intrusions have received little attention in 3D modelling workflows, and there is no current method that ensures the reproduction of intrusion shapes comparable to those mapped in the field or in geophysical imagery. Intrusions are usually partly or totally covered, making the generation of realistic 3D models challenging without the modeller's intervention. In this contribution, we present a method to model igneous intrusions in 3D considering geometric constraints consistent with emplacement mechanisms. Contact data and inflation and propagation direction are used to constrain the geometry of the intrusion. Conceptual models of the intrusion contact are fitted to the data, providing a characterisation of the intrusion thickness and width. The method is tested using synthetic and real-world case studies, and the results indicate that the method can reproduce expected geometries without manual processing and with restricted datasets. A comparison with radial basis function (RBF) interpolation shows that our method can better reproduce complex geometries, such as saucer-shaped sill complexes.\n","PeriodicalId":12799,"journal":{"name":"Geoscientific Model Development","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three-dimensional geological modelling of igneous intrusions in LoopStructural v1.5.10\",\"authors\":\"Fernanda Alvarado-Neves, L. Aillères, Lachlan Grose, Alexander R. Cruden, R. Armit\",\"doi\":\"10.5194/gmd-17-1975-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Over the last 2 decades, there have been significant advances in the 3D modelling of geological structures via the incorporation of geological knowledge into the model algorithms. These methods take advantage of different structural data types and do not require manual processing, making them robust and objective. Igneous intrusions have received little attention in 3D modelling workflows, and there is no current method that ensures the reproduction of intrusion shapes comparable to those mapped in the field or in geophysical imagery. Intrusions are usually partly or totally covered, making the generation of realistic 3D models challenging without the modeller's intervention. In this contribution, we present a method to model igneous intrusions in 3D considering geometric constraints consistent with emplacement mechanisms. Contact data and inflation and propagation direction are used to constrain the geometry of the intrusion. Conceptual models of the intrusion contact are fitted to the data, providing a characterisation of the intrusion thickness and width. The method is tested using synthetic and real-world case studies, and the results indicate that the method can reproduce expected geometries without manual processing and with restricted datasets. A comparison with radial basis function (RBF) interpolation shows that our method can better reproduce complex geometries, such as saucer-shaped sill complexes.\\n\",\"PeriodicalId\":12799,\"journal\":{\"name\":\"Geoscientific Model Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscientific Model Development\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/gmd-17-1975-2024\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscientific Model Development","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/gmd-17-1975-2024","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要在过去 20 年中,通过将地质知识纳入模型算法,地质结构三维建模取得了重大进展。这些方法利用了不同的结构数据类型,无需人工处理,因此既稳健又客观。在三维建模工作流程中,火成岩侵入体很少受到关注,目前还没有一种方法能确保再现与野外或地球物理图像中绘制的侵入体形状相当的侵入体。侵入体通常会被部分或全部覆盖,因此在没有建模人员干预的情况下生成逼真的三维模型具有挑战性。在这篇论文中,我们提出了一种在三维模型中模拟火成岩侵入体的方法,该方法考虑了与置换机制相一致的几何约束。接触数据以及膨胀和传播方向用于约束侵入体的几何形状。根据数据拟合侵入体接触的概念模型,从而确定侵入体的厚度和宽度。使用合成和实际案例研究对该方法进行了测试,结果表明,该方法可以在不进行人工处理和数据集受限的情况下再现预期的几何形状。与径向基函数(RBF)插值法的比较表明,我们的方法能更好地再现复杂的几何形状,如碟形山顶复合体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Three-dimensional geological modelling of igneous intrusions in LoopStructural v1.5.10
Abstract. Over the last 2 decades, there have been significant advances in the 3D modelling of geological structures via the incorporation of geological knowledge into the model algorithms. These methods take advantage of different structural data types and do not require manual processing, making them robust and objective. Igneous intrusions have received little attention in 3D modelling workflows, and there is no current method that ensures the reproduction of intrusion shapes comparable to those mapped in the field or in geophysical imagery. Intrusions are usually partly or totally covered, making the generation of realistic 3D models challenging without the modeller's intervention. In this contribution, we present a method to model igneous intrusions in 3D considering geometric constraints consistent with emplacement mechanisms. Contact data and inflation and propagation direction are used to constrain the geometry of the intrusion. Conceptual models of the intrusion contact are fitted to the data, providing a characterisation of the intrusion thickness and width. The method is tested using synthetic and real-world case studies, and the results indicate that the method can reproduce expected geometries without manual processing and with restricted datasets. A comparison with radial basis function (RBF) interpolation shows that our method can better reproduce complex geometries, such as saucer-shaped sill complexes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geoscientific Model Development
Geoscientific Model Development GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
8.60
自引率
9.80%
发文量
352
审稿时长
6-12 weeks
期刊介绍: Geoscientific Model Development (GMD) is an international scientific journal dedicated to the publication and public discussion of the description, development, and evaluation of numerical models of the Earth system and its components. The following manuscript types can be considered for peer-reviewed publication: * geoscientific model descriptions, from statistical models to box models to GCMs; * development and technical papers, describing developments such as new parameterizations or technical aspects of running models such as the reproducibility of results; * new methods for assessment of models, including work on developing new metrics for assessing model performance and novel ways of comparing model results with observational data; * papers describing new standard experiments for assessing model performance or novel ways of comparing model results with observational data; * model experiment descriptions, including experimental details and project protocols; * full evaluations of previously published models.
期刊最新文献
An improved global pressure and zenith wet delay model with optimized vertical correction considering the spatiotemporal variability in multiple height-scale factors Radiocarbon analysis reveals underestimation of soil organic carbon persistence in new-generation soil models HSW-V v1.0: localized injections of interactive volcanic aerosols and their climate impacts in a simple general circulation model Multivariate adjustment of drizzle bias using machine learning in European climate projections Incorporating Oxygen Isotopes of Oxidized Reactive Nitrogen in the Regional Atmospheric Chemistry Mechanism, version 2 (ICOIN-RACM2)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1