Jasmidi Jasmidi, M. Zubir, R. Selly, P. Faradilla, Siti Rahmah
{"title":"油棕空枝活性炭衍生物对β-胡萝卜素的吸附特性","authors":"Jasmidi Jasmidi, M. Zubir, R. Selly, P. Faradilla, Siti Rahmah","doi":"10.24114/ijcst.v7i1.56436","DOIUrl":null,"url":null,"abstract":"This research aims to determine the adsorption ability of activated carbon and Fe-Cu modified activated carbon in the β-carotene adsorption process on Crude Palm Oil (CPO). Empty Palm Oil Bunches (TKKS) are used as a bio-sorbent for carbon production at a temperature of 500 ºC. The synthesized carbon was activated using H3PO4 and modified with Fe-Cu metal. CPO quality parameters such as Free Fatty Acids and Peroxide Number were analyzed to see the effect of adsorption on CPO quality. The β-carotene level in the CPO sample used is 472.1 ppm. The optimum conditions for using activated carbon in the β-carotene adsorption process are a mass variation of 8 grams with the β-carotene remaining after adsorption being 432.4 ppm, whereas by using Magnetic Activated Carbon, CPO β-carotene after adsorption remains at 426.1 ppm. Meanwhile, increasing the adsorption time causes the absorption of β-carotene to become greater. By using Activated Carbon the remaining β-carotene is 300.1 ppm after 120 minutes, whereas by using Magnetic Activated Carbon the optimum absorption time is faster and the amount of β-carotene absorbed is greater. The remaining βcarotene after absorption with Magnetic Activated Carbon was 288.7 after 90 minutes of adsorption. Apart from being able to absorb β-carotene, magnetic activated carbon is also better at reducing FFA and PV levels from CPO.","PeriodicalId":13519,"journal":{"name":"Indonesian Journal of Chemical Science and Technology (IJCST)","volume":"63 17","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adsorption Properties of Beta Carotene from Activated Carbon Derivatives of Oil Palm Empty Bunches\",\"authors\":\"Jasmidi Jasmidi, M. Zubir, R. Selly, P. Faradilla, Siti Rahmah\",\"doi\":\"10.24114/ijcst.v7i1.56436\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to determine the adsorption ability of activated carbon and Fe-Cu modified activated carbon in the β-carotene adsorption process on Crude Palm Oil (CPO). Empty Palm Oil Bunches (TKKS) are used as a bio-sorbent for carbon production at a temperature of 500 ºC. The synthesized carbon was activated using H3PO4 and modified with Fe-Cu metal. CPO quality parameters such as Free Fatty Acids and Peroxide Number were analyzed to see the effect of adsorption on CPO quality. The β-carotene level in the CPO sample used is 472.1 ppm. The optimum conditions for using activated carbon in the β-carotene adsorption process are a mass variation of 8 grams with the β-carotene remaining after adsorption being 432.4 ppm, whereas by using Magnetic Activated Carbon, CPO β-carotene after adsorption remains at 426.1 ppm. Meanwhile, increasing the adsorption time causes the absorption of β-carotene to become greater. By using Activated Carbon the remaining β-carotene is 300.1 ppm after 120 minutes, whereas by using Magnetic Activated Carbon the optimum absorption time is faster and the amount of β-carotene absorbed is greater. The remaining βcarotene after absorption with Magnetic Activated Carbon was 288.7 after 90 minutes of adsorption. Apart from being able to absorb β-carotene, magnetic activated carbon is also better at reducing FFA and PV levels from CPO.\",\"PeriodicalId\":13519,\"journal\":{\"name\":\"Indonesian Journal of Chemical Science and Technology (IJCST)\",\"volume\":\"63 17\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Chemical Science and Technology (IJCST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24114/ijcst.v7i1.56436\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Chemical Science and Technology (IJCST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24114/ijcst.v7i1.56436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adsorption Properties of Beta Carotene from Activated Carbon Derivatives of Oil Palm Empty Bunches
This research aims to determine the adsorption ability of activated carbon and Fe-Cu modified activated carbon in the β-carotene adsorption process on Crude Palm Oil (CPO). Empty Palm Oil Bunches (TKKS) are used as a bio-sorbent for carbon production at a temperature of 500 ºC. The synthesized carbon was activated using H3PO4 and modified with Fe-Cu metal. CPO quality parameters such as Free Fatty Acids and Peroxide Number were analyzed to see the effect of adsorption on CPO quality. The β-carotene level in the CPO sample used is 472.1 ppm. The optimum conditions for using activated carbon in the β-carotene adsorption process are a mass variation of 8 grams with the β-carotene remaining after adsorption being 432.4 ppm, whereas by using Magnetic Activated Carbon, CPO β-carotene after adsorption remains at 426.1 ppm. Meanwhile, increasing the adsorption time causes the absorption of β-carotene to become greater. By using Activated Carbon the remaining β-carotene is 300.1 ppm after 120 minutes, whereas by using Magnetic Activated Carbon the optimum absorption time is faster and the amount of β-carotene absorbed is greater. The remaining βcarotene after absorption with Magnetic Activated Carbon was 288.7 after 90 minutes of adsorption. Apart from being able to absorb β-carotene, magnetic activated carbon is also better at reducing FFA and PV levels from CPO.