{"title":"用于材料研究的原位加热-电子断层扫描:从三维(原位二维)到四维(原位三维)。","authors":"Satoshi Hata, Shiro Ihara, Hikaru Saito, Mitsuhiro Murayama","doi":"10.1093/jmicro/dfae008","DOIUrl":null,"url":null,"abstract":"<p><p>In-situ observation has expanded the application of transmission electron microscopy (TEM) and has made a significant contribution to materials research and development for energy, biomedical, quantum, etc. Recent technological developments related to in-situ TEM have empowered the incorporation of three-dimensional observation, which was previously considered incompatible. In this review article, we take up heating as the most commonly used external stimulus for in-situ TEM observation and overview recent in-situ TEM studies. Then, we focus on the electron tomography (ET) and in-situ heating combined observation by introducing the authors' recent research as an example. Assuming that in-situ heating observation is expanded from two dimensions to three dimensions using a conventional TEM apparatus and a commercially available in-situ heating specimen holder, the following in-situ heating-and-ET observation procedure is proposed: (i) use a rapid heating-and-cooling function of a micro-electro-mechanical system holder; (ii) heat and cool the specimen intermittently and (iii) acquire a tilt-series dataset when the specimen heating is stopped. This procedure is not too technically challenging and can have a wide range of applications. Essential technical points for a successful 4D (space and time) observation will be discussed through reviewing the authors' example application.</p>","PeriodicalId":74193,"journal":{"name":"Microscopy (Oxford, England)","volume":" ","pages":"133-144"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11000667/pdf/","citationCount":"0","resultStr":"{\"title\":\"In-situ heating-and-electron tomography for materials research: from 3D (in-situ 2D) to 4D (in-situ 3D).\",\"authors\":\"Satoshi Hata, Shiro Ihara, Hikaru Saito, Mitsuhiro Murayama\",\"doi\":\"10.1093/jmicro/dfae008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In-situ observation has expanded the application of transmission electron microscopy (TEM) and has made a significant contribution to materials research and development for energy, biomedical, quantum, etc. Recent technological developments related to in-situ TEM have empowered the incorporation of three-dimensional observation, which was previously considered incompatible. In this review article, we take up heating as the most commonly used external stimulus for in-situ TEM observation and overview recent in-situ TEM studies. Then, we focus on the electron tomography (ET) and in-situ heating combined observation by introducing the authors' recent research as an example. Assuming that in-situ heating observation is expanded from two dimensions to three dimensions using a conventional TEM apparatus and a commercially available in-situ heating specimen holder, the following in-situ heating-and-ET observation procedure is proposed: (i) use a rapid heating-and-cooling function of a micro-electro-mechanical system holder; (ii) heat and cool the specimen intermittently and (iii) acquire a tilt-series dataset when the specimen heating is stopped. This procedure is not too technically challenging and can have a wide range of applications. Essential technical points for a successful 4D (space and time) observation will be discussed through reviewing the authors' example application.</p>\",\"PeriodicalId\":74193,\"journal\":{\"name\":\"Microscopy (Oxford, England)\",\"volume\":\" \",\"pages\":\"133-144\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11000667/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/jmicro/dfae008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jmicro/dfae008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
原位观测扩大了透射电子显微镜(TEM)的应用范围,为能源、生物医学、量子等领域的材料研发做出了重大贡献。与原位 TEM 相关的最新技术发展,使以前被认为不相容的三维观察得以实现。在这篇综述文章中,我们将加热作为原位 TEM 观察最常用的外部刺激,并概述了最近的原位 TEM 研究。然后,我们以作者最近的研究为例,重点介绍了电子断层扫描(ET)与原位加热相结合的观测方法。假设使用传统的 TEM 仪器和市售的原位加热试样架将原位加热观测从二维扩展到三维,我们提出了以下原位加热-ET 观测程序:(i) 使用微机电系统支架的快速加热和冷却功能;(ii) 间歇加热和冷却试样;(iii) 在试样加热停止时获取倾斜序列数据集。这一程序在技术上并无太大难度,而且应用范围广泛。我们将通过回顾作者的应用实例,讨论成功进行四维(空间和时间)观测的基本技术要点。
In-situ heating-and-electron tomography for materials research: from 3D (in-situ 2D) to 4D (in-situ 3D).
In-situ observation has expanded the application of transmission electron microscopy (TEM) and has made a significant contribution to materials research and development for energy, biomedical, quantum, etc. Recent technological developments related to in-situ TEM have empowered the incorporation of three-dimensional observation, which was previously considered incompatible. In this review article, we take up heating as the most commonly used external stimulus for in-situ TEM observation and overview recent in-situ TEM studies. Then, we focus on the electron tomography (ET) and in-situ heating combined observation by introducing the authors' recent research as an example. Assuming that in-situ heating observation is expanded from two dimensions to three dimensions using a conventional TEM apparatus and a commercially available in-situ heating specimen holder, the following in-situ heating-and-ET observation procedure is proposed: (i) use a rapid heating-and-cooling function of a micro-electro-mechanical system holder; (ii) heat and cool the specimen intermittently and (iii) acquire a tilt-series dataset when the specimen heating is stopped. This procedure is not too technically challenging and can have a wide range of applications. Essential technical points for a successful 4D (space and time) observation will be discussed through reviewing the authors' example application.