A. V. Tyurin, D. A. Chareev, N. A. Polotnyanko, A. V. Khoroshilov, I. G. Puzanova, N. A. Zgurskiy
{"title":"二卤化钌在宽温度范围内的合成与热力学功能","authors":"A. V. Tyurin, D. A. Chareev, N. A. Polotnyanko, A. V. Khoroshilov, I. G. Puzanova, N. A. Zgurskiy","doi":"10.1134/S0020168523110146","DOIUrl":null,"url":null,"abstract":"<p>Thermodynamic properties of polycrystalline powders of ruthenium dichalcogenides have been studied using calorimetric isobaric heat capacity measurements in a wide temperature range. The adiabatic and differential scanning calorimetry data for ruthenium disulfide and ruthenium diselenide have been used to determine standard thermodynamic functions (heat capacity, entropy, enthalpy increment, and reduced Gibbs energy) of these compounds in the range 10–965 K. At 298.15 K, the functions of RuS<sub>2</sub> are as follows: <span>\\(C_{p}^{^\\circ }\\)</span> = 60.82 ± 0.12 J/(K mol), <i>S</i>° = 56.05 ± 0.11 J/(K mol), <i>Н</i>°(298.15 K) − <i>Н</i>°(0) = 9.75 ± 0.02 kJ/mol, and Ф° = 23.34 ± 0.05 J/(K mol). For RuSe<sub>2</sub>, we have obtained <span>\\(C_{p}^{^\\circ }\\)</span> = 69.96 ± 0.14 J/(K mol), <i>S</i>° = 80.62 ± 0.16 J/(K mol), <i>Н</i>°(298.15 K) − <i>Н</i>°(0) = 13.05 ± 0.03 kJ/mol, and Ф° = 36.85 ± 0.08 J/(K mol). The data obtained above 298 K have been used to determine empirical coefficients of the Maier–Kelley and Khodakovsky equations. The absolute entropies obtained in this study for the ruthenium dichalcogenides, in combination with literature data, have made it possible to evaluate the Gibbs energy of formation of RuS<sub>2</sub>(cr) and RuSe<sub>2</sub>(cr) at 298.15 K.</p>","PeriodicalId":585,"journal":{"name":"Inorganic Materials","volume":"59 11","pages":"1230 - 1241"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Thermodynamic Functions of Ruthenium Dichalcogenides in a Wide Temperature Range\",\"authors\":\"A. V. Tyurin, D. A. Chareev, N. A. Polotnyanko, A. V. Khoroshilov, I. G. Puzanova, N. A. Zgurskiy\",\"doi\":\"10.1134/S0020168523110146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Thermodynamic properties of polycrystalline powders of ruthenium dichalcogenides have been studied using calorimetric isobaric heat capacity measurements in a wide temperature range. The adiabatic and differential scanning calorimetry data for ruthenium disulfide and ruthenium diselenide have been used to determine standard thermodynamic functions (heat capacity, entropy, enthalpy increment, and reduced Gibbs energy) of these compounds in the range 10–965 K. At 298.15 K, the functions of RuS<sub>2</sub> are as follows: <span>\\\\(C_{p}^{^\\\\circ }\\\\)</span> = 60.82 ± 0.12 J/(K mol), <i>S</i>° = 56.05 ± 0.11 J/(K mol), <i>Н</i>°(298.15 K) − <i>Н</i>°(0) = 9.75 ± 0.02 kJ/mol, and Ф° = 23.34 ± 0.05 J/(K mol). For RuSe<sub>2</sub>, we have obtained <span>\\\\(C_{p}^{^\\\\circ }\\\\)</span> = 69.96 ± 0.14 J/(K mol), <i>S</i>° = 80.62 ± 0.16 J/(K mol), <i>Н</i>°(298.15 K) − <i>Н</i>°(0) = 13.05 ± 0.03 kJ/mol, and Ф° = 36.85 ± 0.08 J/(K mol). The data obtained above 298 K have been used to determine empirical coefficients of the Maier–Kelley and Khodakovsky equations. The absolute entropies obtained in this study for the ruthenium dichalcogenides, in combination with literature data, have made it possible to evaluate the Gibbs energy of formation of RuS<sub>2</sub>(cr) and RuSe<sub>2</sub>(cr) at 298.15 K.</p>\",\"PeriodicalId\":585,\"journal\":{\"name\":\"Inorganic Materials\",\"volume\":\"59 11\",\"pages\":\"1230 - 1241\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0020168523110146\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1134/S0020168523110146","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis and Thermodynamic Functions of Ruthenium Dichalcogenides in a Wide Temperature Range
Thermodynamic properties of polycrystalline powders of ruthenium dichalcogenides have been studied using calorimetric isobaric heat capacity measurements in a wide temperature range. The adiabatic and differential scanning calorimetry data for ruthenium disulfide and ruthenium diselenide have been used to determine standard thermodynamic functions (heat capacity, entropy, enthalpy increment, and reduced Gibbs energy) of these compounds in the range 10–965 K. At 298.15 K, the functions of RuS2 are as follows: \(C_{p}^{^\circ }\) = 60.82 ± 0.12 J/(K mol), S° = 56.05 ± 0.11 J/(K mol), Н°(298.15 K) − Н°(0) = 9.75 ± 0.02 kJ/mol, and Ф° = 23.34 ± 0.05 J/(K mol). For RuSe2, we have obtained \(C_{p}^{^\circ }\) = 69.96 ± 0.14 J/(K mol), S° = 80.62 ± 0.16 J/(K mol), Н°(298.15 K) − Н°(0) = 13.05 ± 0.03 kJ/mol, and Ф° = 36.85 ± 0.08 J/(K mol). The data obtained above 298 K have been used to determine empirical coefficients of the Maier–Kelley and Khodakovsky equations. The absolute entropies obtained in this study for the ruthenium dichalcogenides, in combination with literature data, have made it possible to evaluate the Gibbs energy of formation of RuS2(cr) and RuSe2(cr) at 298.15 K.
期刊介绍:
Inorganic Materials is a journal that publishes reviews and original articles devoted to chemistry, physics, and applications of various inorganic materials including high-purity substances and materials. The journal discusses phase equilibria, including P–T–X diagrams, and the fundamentals of inorganic materials science, which determines preparatory conditions for compounds of various compositions with specified deviations from stoichiometry. Inorganic Materials is a multidisciplinary journal covering all classes of inorganic materials. The journal welcomes manuscripts from all countries in the English or Russian language.