Richard A. J. Post, Edwin R. van den Heuvel, Hein Putter
{"title":"因果效应异质性情况下加法危险模型的偏差","authors":"Richard A. J. Post, Edwin R. van den Heuvel, Hein Putter","doi":"10.1007/s10985-024-09616-z","DOIUrl":null,"url":null,"abstract":"<p>Hazard ratios are prone to selection bias, compromising their use as causal estimands. On the other hand, if Aalen’s additive hazard model applies, the hazard difference has been shown to remain unaffected by the selection of frailty factors over time. Then, in the absence of confounding, observed hazard differences are equal in expectation to the causal hazard differences. However, in the presence of effect (on the hazard) heterogeneity, the observed hazard difference is also affected by selection of survivors. In this work, we formalize how the observed hazard difference (from a randomized controlled trial) evolves by selecting favourable levels of effect modifiers in the exposed group and thus deviates from the causal effect of interest. Such selection may result in a non-linear integrated hazard difference curve even when the individual causal effects are time-invariant. Therefore, a homogeneous time-varying causal additive effect on the hazard cannot be distinguished from a time-invariant but heterogeneous causal effect. We illustrate this causal issue by studying the effect of chemotherapy on the survival time of patients suffering from carcinoma of the oropharynx using data from a clinical trial. The hazard difference can thus not be used as an appropriate measure of the causal effect without making untestable assumptions.</p>","PeriodicalId":49908,"journal":{"name":"Lifetime Data Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bias of the additive hazard model in the presence of causal effect heterogeneity\",\"authors\":\"Richard A. J. Post, Edwin R. van den Heuvel, Hein Putter\",\"doi\":\"10.1007/s10985-024-09616-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hazard ratios are prone to selection bias, compromising their use as causal estimands. On the other hand, if Aalen’s additive hazard model applies, the hazard difference has been shown to remain unaffected by the selection of frailty factors over time. Then, in the absence of confounding, observed hazard differences are equal in expectation to the causal hazard differences. However, in the presence of effect (on the hazard) heterogeneity, the observed hazard difference is also affected by selection of survivors. In this work, we formalize how the observed hazard difference (from a randomized controlled trial) evolves by selecting favourable levels of effect modifiers in the exposed group and thus deviates from the causal effect of interest. Such selection may result in a non-linear integrated hazard difference curve even when the individual causal effects are time-invariant. Therefore, a homogeneous time-varying causal additive effect on the hazard cannot be distinguished from a time-invariant but heterogeneous causal effect. We illustrate this causal issue by studying the effect of chemotherapy on the survival time of patients suffering from carcinoma of the oropharynx using data from a clinical trial. The hazard difference can thus not be used as an appropriate measure of the causal effect without making untestable assumptions.</p>\",\"PeriodicalId\":49908,\"journal\":{\"name\":\"Lifetime Data Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lifetime Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10985-024-09616-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lifetime Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10985-024-09616-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Bias of the additive hazard model in the presence of causal effect heterogeneity
Hazard ratios are prone to selection bias, compromising their use as causal estimands. On the other hand, if Aalen’s additive hazard model applies, the hazard difference has been shown to remain unaffected by the selection of frailty factors over time. Then, in the absence of confounding, observed hazard differences are equal in expectation to the causal hazard differences. However, in the presence of effect (on the hazard) heterogeneity, the observed hazard difference is also affected by selection of survivors. In this work, we formalize how the observed hazard difference (from a randomized controlled trial) evolves by selecting favourable levels of effect modifiers in the exposed group and thus deviates from the causal effect of interest. Such selection may result in a non-linear integrated hazard difference curve even when the individual causal effects are time-invariant. Therefore, a homogeneous time-varying causal additive effect on the hazard cannot be distinguished from a time-invariant but heterogeneous causal effect. We illustrate this causal issue by studying the effect of chemotherapy on the survival time of patients suffering from carcinoma of the oropharynx using data from a clinical trial. The hazard difference can thus not be used as an appropriate measure of the causal effect without making untestable assumptions.
期刊介绍:
The objective of Lifetime Data Analysis is to advance and promote statistical science in the various applied fields that deal with lifetime data, including: Actuarial Science – Economics – Engineering Sciences – Environmental Sciences – Management Science – Medicine – Operations Research – Public Health – Social and Behavioral Sciences.