S Moslehi, C Rowland, J H Smith, W J Watterson, W Griffiths, R D Montgomery, S Philliber, C A Marlow, M-T Perez, R P Taylor
{"title":"用于刺激和传感神经网络的分形电子学:增强电气、光学和细胞交互特性。","authors":"S Moslehi, C Rowland, J H Smith, W J Watterson, W Griffiths, R D Montgomery, S Philliber, C A Marlow, M-T Perez, R P Taylor","doi":"10.1007/978-3-031-47606-8_43","DOIUrl":null,"url":null,"abstract":"<p><p>Imagine a world in which damaged parts of the body - an arm, an eye, and ultimately a region of the brain - can be replaced by artificial implants capable of restoring or even enhancing human performance. The associated improvements in the quality of human life would revolutionize the medical world and produce sweeping changes across society. In this chapter, we discuss several approaches to the fabrication of fractal electronics designed to interface with neural networks. We consider two fundamental functions - stimulating electrical signals in the neural networks and sensing the location of the signals as they pass through the network. Using experiments and simulations, we discuss the favorable electrical performances that arise from adopting fractal rather than traditional Euclidean architectures. We also demonstrate how the fractal architecture induces favorable physical interactions with the cells they interact with, including the ability to direct the growth of neurons and glia to specific regions of the neural-electronic interface.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"849-875"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractal Electronics for Stimulating and Sensing Neural Networks: Enhanced Electrical, Optical, and Cell Interaction Properties.\",\"authors\":\"S Moslehi, C Rowland, J H Smith, W J Watterson, W Griffiths, R D Montgomery, S Philliber, C A Marlow, M-T Perez, R P Taylor\",\"doi\":\"10.1007/978-3-031-47606-8_43\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Imagine a world in which damaged parts of the body - an arm, an eye, and ultimately a region of the brain - can be replaced by artificial implants capable of restoring or even enhancing human performance. The associated improvements in the quality of human life would revolutionize the medical world and produce sweeping changes across society. In this chapter, we discuss several approaches to the fabrication of fractal electronics designed to interface with neural networks. We consider two fundamental functions - stimulating electrical signals in the neural networks and sensing the location of the signals as they pass through the network. Using experiments and simulations, we discuss the favorable electrical performances that arise from adopting fractal rather than traditional Euclidean architectures. We also demonstrate how the fractal architecture induces favorable physical interactions with the cells they interact with, including the ability to direct the growth of neurons and glia to specific regions of the neural-electronic interface.</p>\",\"PeriodicalId\":7360,\"journal\":{\"name\":\"Advances in neurobiology\",\"volume\":\"36 \",\"pages\":\"849-875\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in neurobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-47606-8_43\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-47606-8_43","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
Fractal Electronics for Stimulating and Sensing Neural Networks: Enhanced Electrical, Optical, and Cell Interaction Properties.
Imagine a world in which damaged parts of the body - an arm, an eye, and ultimately a region of the brain - can be replaced by artificial implants capable of restoring or even enhancing human performance. The associated improvements in the quality of human life would revolutionize the medical world and produce sweeping changes across society. In this chapter, we discuss several approaches to the fabrication of fractal electronics designed to interface with neural networks. We consider two fundamental functions - stimulating electrical signals in the neural networks and sensing the location of the signals as they pass through the network. Using experiments and simulations, we discuss the favorable electrical performances that arise from adopting fractal rather than traditional Euclidean architectures. We also demonstrate how the fractal architecture induces favorable physical interactions with the cells they interact with, including the ability to direct the growth of neurons and glia to specific regions of the neural-electronic interface.