分形神经动力学。

Q3 Neuroscience Advances in neurobiology Pub Date : 2024-01-01 DOI:10.1007/978-3-031-47606-8_33
Karolina Armonaite, Livio Conti, Franca Tecchio
{"title":"分形神经动力学。","authors":"Karolina Armonaite, Livio Conti, Franca Tecchio","doi":"10.1007/978-3-031-47606-8_33","DOIUrl":null,"url":null,"abstract":"<p><p>The neuronal ongoing electrical activity in the brain network, the neurodynamics, reflects the structure and functionality of generating neuronal pools. The activity of neurons due to their excitatory and inhibitory projections is associated with specific brain functions. Here, the purpose was to investigate if the local ongoing electrical activity exhibits its characteristic spectral and fractal features in wakefulness and sleep across and within subjects. Moreover, we aimed to show that measures typical of complex systems catch physiological features missed by linear spectral analyses. For this study, we concentrated on the evaluation of the power spectral density (PSD) and Higuchi fractal dimension (HFD) measures. Relevant clinical impact of the specific features of neurodynamics identification stands primarily in the potential of classifying cortical parcels according to their neurodynamics as well as enhancing the effectiveness of neuromodulation interventions to cure symptoms secondary to neuronal activity unbalances.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractal Neurodynamics.\",\"authors\":\"Karolina Armonaite, Livio Conti, Franca Tecchio\",\"doi\":\"10.1007/978-3-031-47606-8_33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The neuronal ongoing electrical activity in the brain network, the neurodynamics, reflects the structure and functionality of generating neuronal pools. The activity of neurons due to their excitatory and inhibitory projections is associated with specific brain functions. Here, the purpose was to investigate if the local ongoing electrical activity exhibits its characteristic spectral and fractal features in wakefulness and sleep across and within subjects. Moreover, we aimed to show that measures typical of complex systems catch physiological features missed by linear spectral analyses. For this study, we concentrated on the evaluation of the power spectral density (PSD) and Higuchi fractal dimension (HFD) measures. Relevant clinical impact of the specific features of neurodynamics identification stands primarily in the potential of classifying cortical parcels according to their neurodynamics as well as enhancing the effectiveness of neuromodulation interventions to cure symptoms secondary to neuronal activity unbalances.</p>\",\"PeriodicalId\":7360,\"journal\":{\"name\":\"Advances in neurobiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in neurobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-47606-8_33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-47606-8_33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

摘要

大脑网络中神经元持续的电活动,即神经动力学,反映了神经元池的结构和功能。神经元的兴奋和抑制投射活动与特定的大脑功能有关。在这里,我们的目的是研究在清醒和睡眠状态下,不同受试者之间以及受试者内部的局部持续电活动是否表现出其特有的频谱和分形特征。此外,我们还希望证明,复杂系统的典型测量方法能够捕捉到线性频谱分析所遗漏的生理特征。在这项研究中,我们重点评估了功率谱密度(PSD)和樋口分形维度(HFD)测量方法。神经动力学识别的具体特征对临床的相关影响主要体现在根据神经动力学对皮层区块进行分类的潜力,以及提高神经调节干预治疗继发于神经元活动失衡症状的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fractal Neurodynamics.

The neuronal ongoing electrical activity in the brain network, the neurodynamics, reflects the structure and functionality of generating neuronal pools. The activity of neurons due to their excitatory and inhibitory projections is associated with specific brain functions. Here, the purpose was to investigate if the local ongoing electrical activity exhibits its characteristic spectral and fractal features in wakefulness and sleep across and within subjects. Moreover, we aimed to show that measures typical of complex systems catch physiological features missed by linear spectral analyses. For this study, we concentrated on the evaluation of the power spectral density (PSD) and Higuchi fractal dimension (HFD) measures. Relevant clinical impact of the specific features of neurodynamics identification stands primarily in the potential of classifying cortical parcels according to their neurodynamics as well as enhancing the effectiveness of neuromodulation interventions to cure symptoms secondary to neuronal activity unbalances.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in neurobiology
Advances in neurobiology Neuroscience-Neurology
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
A Self-Similarity Logic May Shape the Organization of the Nervous System. Advances in Understanding Fractals in Affective and Anxiety Disorders. Analyzing Eye Paths Using Fractals. Box-Counting Fractal Analysis: A Primer for the Clinician. Clinical Sensitivity of Fractal Neurodynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1