分形共振:分形几何能否用于优化神经元与人工植入物的连接?

Q3 Neuroscience Advances in neurobiology Pub Date : 2024-01-01 DOI:10.1007/978-3-031-47606-8_44
C Rowland, S Moslehi, J H Smith, B Harland, J Dalrymple-Alford, R P Taylor
{"title":"分形共振:分形几何能否用于优化神经元与人工植入物的连接?","authors":"C Rowland, S Moslehi, J H Smith, B Harland, J Dalrymple-Alford, R P Taylor","doi":"10.1007/978-3-031-47606-8_44","DOIUrl":null,"url":null,"abstract":"<p><p>In parallel to medical applications, exploring how neurons interact with the artificial interface of implants in the human body can be used to learn about their fundamental behavior. For both fundamental and applied research, it is important to determine the conditions that encourage neurons to maintain their natural behavior during these interactions. Whereas previous biocompatibility studies have focused on the material properties of the neuron-implant interface, here we discuss the concept of fractal resonance - the possibility that favorable connectivity properties might emerge by matching the fractal geometry of the implant surface to that of the neurons.To investigate fractal resonance, we first determine the degree to which neurons are fractal and the impact of this fractality on their functionality. By analyzing three-dimensional images of rat hippocampal neurons, we find that the way their dendrites fork and weave through space is important for generating their fractal-like behavior. By modeling variations in neuron connectivity along with the associated energetic and material costs, we highlight how the neurons' fractal dimension optimizes these constraints. To simulate neuron interactions with implant interfaces, we distort the neuron models away from their natural form by modifying the dendrites' fork and weaving patterns. We find that small deviations can induce large changes in fractal dimension, causing the balance between connectivity and cost to deteriorate rapidly. We propose that implant surfaces should be patterned to match the fractal dimension of the neurons, allowing them to maintain their natural functionality as they interact with the implant.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"877-906"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractal Resonance: Can Fractal Geometry Be Used to Optimize the Connectivity of Neurons to Artificial Implants?\",\"authors\":\"C Rowland, S Moslehi, J H Smith, B Harland, J Dalrymple-Alford, R P Taylor\",\"doi\":\"10.1007/978-3-031-47606-8_44\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In parallel to medical applications, exploring how neurons interact with the artificial interface of implants in the human body can be used to learn about their fundamental behavior. For both fundamental and applied research, it is important to determine the conditions that encourage neurons to maintain their natural behavior during these interactions. Whereas previous biocompatibility studies have focused on the material properties of the neuron-implant interface, here we discuss the concept of fractal resonance - the possibility that favorable connectivity properties might emerge by matching the fractal geometry of the implant surface to that of the neurons.To investigate fractal resonance, we first determine the degree to which neurons are fractal and the impact of this fractality on their functionality. By analyzing three-dimensional images of rat hippocampal neurons, we find that the way their dendrites fork and weave through space is important for generating their fractal-like behavior. By modeling variations in neuron connectivity along with the associated energetic and material costs, we highlight how the neurons' fractal dimension optimizes these constraints. To simulate neuron interactions with implant interfaces, we distort the neuron models away from their natural form by modifying the dendrites' fork and weaving patterns. We find that small deviations can induce large changes in fractal dimension, causing the balance between connectivity and cost to deteriorate rapidly. We propose that implant surfaces should be patterned to match the fractal dimension of the neurons, allowing them to maintain their natural functionality as they interact with the implant.</p>\",\"PeriodicalId\":7360,\"journal\":{\"name\":\"Advances in neurobiology\",\"volume\":\"36 \",\"pages\":\"877-906\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in neurobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-47606-8_44\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-47606-8_44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

摘要

在医疗应用的同时,探索神经元如何与植入人体的人工界面进行交互,也可用于了解神经元的基本行为。对于基础研究和应用研究而言,确定促使神经元在这些互动过程中保持自然行为的条件非常重要。以往的生物相容性研究主要关注神经元-植入物界面的材料特性,而在这里我们讨论的是分形共振的概念--通过将植入物表面的分形几何形状与神经元的分形几何形状相匹配,可能会产生有利的连接特性。通过分析大鼠海马神经元的三维图像,我们发现它们的树突在空间中分叉和编织的方式对产生分形行为非常重要。通过模拟神经元连通性的变化以及相关的能量和材料成本,我们强调了神经元的分形维度是如何优化这些约束条件的。为了模拟神经元与植入界面的相互作用,我们通过修改树突的分叉和编织模式,使神经元模型偏离其自然形态。我们发现,微小的偏差就能引起分形维度的巨大变化,导致连接性和成本之间的平衡迅速恶化。我们建议,植入物表面的图案应与神经元的分形维度相匹配,使神经元在与植入物互动时保持其自然功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fractal Resonance: Can Fractal Geometry Be Used to Optimize the Connectivity of Neurons to Artificial Implants?

In parallel to medical applications, exploring how neurons interact with the artificial interface of implants in the human body can be used to learn about their fundamental behavior. For both fundamental and applied research, it is important to determine the conditions that encourage neurons to maintain their natural behavior during these interactions. Whereas previous biocompatibility studies have focused on the material properties of the neuron-implant interface, here we discuss the concept of fractal resonance - the possibility that favorable connectivity properties might emerge by matching the fractal geometry of the implant surface to that of the neurons.To investigate fractal resonance, we first determine the degree to which neurons are fractal and the impact of this fractality on their functionality. By analyzing three-dimensional images of rat hippocampal neurons, we find that the way their dendrites fork and weave through space is important for generating their fractal-like behavior. By modeling variations in neuron connectivity along with the associated energetic and material costs, we highlight how the neurons' fractal dimension optimizes these constraints. To simulate neuron interactions with implant interfaces, we distort the neuron models away from their natural form by modifying the dendrites' fork and weaving patterns. We find that small deviations can induce large changes in fractal dimension, causing the balance between connectivity and cost to deteriorate rapidly. We propose that implant surfaces should be patterned to match the fractal dimension of the neurons, allowing them to maintain their natural functionality as they interact with the implant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in neurobiology
Advances in neurobiology Neuroscience-Neurology
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
A Self-Similarity Logic May Shape the Organization of the Nervous System. Advances in Understanding Fractals in Affective and Anxiety Disorders. Analyzing Eye Paths Using Fractals. Box-Counting Fractal Analysis: A Primer for the Clinician. Clinical Sensitivity of Fractal Neurodynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1