基于分形的脑肿瘤组织学特征分析

Q3 Neuroscience Advances in neurobiology Pub Date : 2024-01-01 DOI:10.1007/978-3-031-47606-8_26
Omar S Al-Kadi, Antonio Di Ieva
{"title":"基于分形的脑肿瘤组织学特征分析","authors":"Omar S Al-Kadi, Antonio Di Ieva","doi":"10.1007/978-3-031-47606-8_26","DOIUrl":null,"url":null,"abstract":"<p><p>The structural complexity of brain tumor tissue represents a major challenge for effective histopathological diagnosis. Tumor vasculature is known to be heterogeneous, and mixtures of patterns are usually present. Therefore, extracting key descriptive features for accurate quantification is not a straightforward task. Several steps are involved in the texture analysis process where tissue heterogeneity contributes to the variability of the results. One of the interesting aspects of the brain lies in its fractal nature. Many regions within the brain tissue yield similar statistical properties at different scales of magnification. Fractal-based analysis of the histological features of brain tumors can reveal the underlying complexity of tissue structure and angiostructure, also providing an indication of tissue abnormality development. It can further be used to quantify the chaotic signature of disease to distinguish between different temporal tumor stages and histopathological grades.Brain meningioma subtype classifications' improvement from histopathological images is the main focus of this chapter. Meningioma tissue texture exhibits a wide range of histological patterns whereby a single slide may show a combination of multiple patterns. Distinctive fractal patterns quantified in a multiresolution manner would be for better spatial relationship representation. Fractal features extracted from textural tissue patterns can be useful in characterizing meningioma tumors in terms of subtype classification, a challenging problem compared to histological grading, and furthermore can provide an objective measure for quantifying subtle features within subtypes that are hard to discriminate.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"501-524"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractal-Based Analysis of Histological Features of Brain Tumors.\",\"authors\":\"Omar S Al-Kadi, Antonio Di Ieva\",\"doi\":\"10.1007/978-3-031-47606-8_26\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The structural complexity of brain tumor tissue represents a major challenge for effective histopathological diagnosis. Tumor vasculature is known to be heterogeneous, and mixtures of patterns are usually present. Therefore, extracting key descriptive features for accurate quantification is not a straightforward task. Several steps are involved in the texture analysis process where tissue heterogeneity contributes to the variability of the results. One of the interesting aspects of the brain lies in its fractal nature. Many regions within the brain tissue yield similar statistical properties at different scales of magnification. Fractal-based analysis of the histological features of brain tumors can reveal the underlying complexity of tissue structure and angiostructure, also providing an indication of tissue abnormality development. It can further be used to quantify the chaotic signature of disease to distinguish between different temporal tumor stages and histopathological grades.Brain meningioma subtype classifications' improvement from histopathological images is the main focus of this chapter. Meningioma tissue texture exhibits a wide range of histological patterns whereby a single slide may show a combination of multiple patterns. Distinctive fractal patterns quantified in a multiresolution manner would be for better spatial relationship representation. Fractal features extracted from textural tissue patterns can be useful in characterizing meningioma tumors in terms of subtype classification, a challenging problem compared to histological grading, and furthermore can provide an objective measure for quantifying subtle features within subtypes that are hard to discriminate.</p>\",\"PeriodicalId\":7360,\"journal\":{\"name\":\"Advances in neurobiology\",\"volume\":\"36 \",\"pages\":\"501-524\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in neurobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-47606-8_26\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-47606-8_26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

摘要

脑肿瘤组织结构复杂,是有效组织病理学诊断的一大挑战。众所周知,肿瘤血管是异质的,通常存在多种模式。因此,提取关键的描述性特征以进行精确量化并非易事。纹理分析过程涉及多个步骤,其中组织的异质性会导致结果的多变性。大脑的有趣之处在于其分形性质。在不同的放大比例下,脑组织内的许多区域会产生类似的统计特性。对脑肿瘤组织学特征进行基于分形的分析,可以揭示组织结构和血管结构的潜在复杂性,还能提供组织异常发展的迹象。本章的重点是通过组织病理学图像改进脑膜瘤亚型分类。脑膜瘤组织纹理表现出多种组织学模式,一张切片可能显示多种模式的组合。以多分辨率的方式量化独特的分形模式可以更好地表示空间关系。从组织纹理模式中提取的分形特征有助于对脑膜瘤肿瘤进行亚型分类,这是一个比组织学分级更具挑战性的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fractal-Based Analysis of Histological Features of Brain Tumors.

The structural complexity of brain tumor tissue represents a major challenge for effective histopathological diagnosis. Tumor vasculature is known to be heterogeneous, and mixtures of patterns are usually present. Therefore, extracting key descriptive features for accurate quantification is not a straightforward task. Several steps are involved in the texture analysis process where tissue heterogeneity contributes to the variability of the results. One of the interesting aspects of the brain lies in its fractal nature. Many regions within the brain tissue yield similar statistical properties at different scales of magnification. Fractal-based analysis of the histological features of brain tumors can reveal the underlying complexity of tissue structure and angiostructure, also providing an indication of tissue abnormality development. It can further be used to quantify the chaotic signature of disease to distinguish between different temporal tumor stages and histopathological grades.Brain meningioma subtype classifications' improvement from histopathological images is the main focus of this chapter. Meningioma tissue texture exhibits a wide range of histological patterns whereby a single slide may show a combination of multiple patterns. Distinctive fractal patterns quantified in a multiresolution manner would be for better spatial relationship representation. Fractal features extracted from textural tissue patterns can be useful in characterizing meningioma tumors in terms of subtype classification, a challenging problem compared to histological grading, and furthermore can provide an objective measure for quantifying subtle features within subtypes that are hard to discriminate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in neurobiology
Advances in neurobiology Neuroscience-Neurology
CiteScore
2.80
自引率
0.00%
发文量
0
期刊最新文献
A Self-Similarity Logic May Shape the Organization of the Nervous System. Advances in Understanding Fractals in Affective and Anxiety Disorders. Analyzing Eye Paths Using Fractals. Box-Counting Fractal Analysis: A Primer for the Clinician. Clinical Sensitivity of Fractal Neurodynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1