{"title":"胶质母细胞瘤脑肿瘤界面的多分形分析","authors":"Jacksson Sánchez, Miguel Martín-Landrove","doi":"10.1007/978-3-031-47606-8_25","DOIUrl":null,"url":null,"abstract":"<p><p>The dynamics of tumor growth is a very complex process, generally accompanied by numerous chromosomal aberrations that determine its genetic and dynamical heterogeneity. Consequently, the tumor interface exhibits a non-regular and heterogeneous behavior often described by a single fractal dimension. A more suitable approach is to consider the tumor interface as a multifractal object that can be described by a set of generalized fractal dimensions. In the present work, detrended fluctuation and multifractal analysis are used to characterize the complexity of glioblastoma.</p>","PeriodicalId":7360,"journal":{"name":"Advances in neurobiology","volume":"36 ","pages":"487-499"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multifractal Analysis of Brain Tumor Interface in Glioblastoma.\",\"authors\":\"Jacksson Sánchez, Miguel Martín-Landrove\",\"doi\":\"10.1007/978-3-031-47606-8_25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The dynamics of tumor growth is a very complex process, generally accompanied by numerous chromosomal aberrations that determine its genetic and dynamical heterogeneity. Consequently, the tumor interface exhibits a non-regular and heterogeneous behavior often described by a single fractal dimension. A more suitable approach is to consider the tumor interface as a multifractal object that can be described by a set of generalized fractal dimensions. In the present work, detrended fluctuation and multifractal analysis are used to characterize the complexity of glioblastoma.</p>\",\"PeriodicalId\":7360,\"journal\":{\"name\":\"Advances in neurobiology\",\"volume\":\"36 \",\"pages\":\"487-499\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in neurobiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-47606-8_25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Neuroscience\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-47606-8_25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
Multifractal Analysis of Brain Tumor Interface in Glioblastoma.
The dynamics of tumor growth is a very complex process, generally accompanied by numerous chromosomal aberrations that determine its genetic and dynamical heterogeneity. Consequently, the tumor interface exhibits a non-regular and heterogeneous behavior often described by a single fractal dimension. A more suitable approach is to consider the tumor interface as a multifractal object that can be described by a set of generalized fractal dimensions. In the present work, detrended fluctuation and multifractal analysis are used to characterize the complexity of glioblastoma.