全基因组筛选发现大肠杆菌中对硼酸具有内在抗性的基因

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-12-01 Epub Date: 2024-03-11 DOI:10.1007/s12011-024-04129-0
Bekir Çöl, Merve Sezer Kürkçü, Esra Di Bek
{"title":"全基因组筛选发现大肠杆菌中对硼酸具有内在抗性的基因","authors":"Bekir Çöl, Merve Sezer Kürkçü, Esra Di Bek","doi":"10.1007/s12011-024-04129-0","DOIUrl":null,"url":null,"abstract":"<p><p>Boric acid (BA) has antimicrobial properties and is used to combat bacterial infections, including Enterobacteria. However, the molecular mechanisms and cellular responses to BA are still unknown. This genomics study aims to provide new information on the genes and molecular mechanisms related to the antimicrobial effect of BA in Escherichia coli. The Keio collection of E. coli was used to screen 3985 single-gene knockout strains in order to identify mutant strains that were sensitive or hypersensitive to BA at certain concentrations. The mutant strains were exposed to different concentrations of BA ranging from 0 to 120 mM in LB media. Through genome-wide screens, 92 mutants were identified that were relatively sensitive to BA at least at one concentration tested. The related biological processes in the particular cellular system were listed. This study demonstrates that intrinsic BA resistance is the result of various mechanisms acting together. Additionally, we identified eighteen out of ninety-two mutant strains (Delta_aceF, aroK, cheZ, dinJ, galS, garP, glxK, nohA, talB, torR, trmU, trpR, yddE, yfeS, ygaV, ylaC, yoaC, yohN) that exhibited sensitivity using other methods. To increase sensitivity to BA, we constructed double and triple knockout mutants of the selected sensitive mutants. In certain instances, engineered double and triple mutants exhibited significantly amplified effects. Overall, our analysis of these findings offers further understanding of the mechanisms behind BA toxicity and intrinsic resistance in E. coli.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502571/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genome-Wide Screens Identify Genes Responsible for Intrinsic Boric Acid Resistance in Escherichia coli.\",\"authors\":\"Bekir Çöl, Merve Sezer Kürkçü, Esra Di Bek\",\"doi\":\"10.1007/s12011-024-04129-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Boric acid (BA) has antimicrobial properties and is used to combat bacterial infections, including Enterobacteria. However, the molecular mechanisms and cellular responses to BA are still unknown. This genomics study aims to provide new information on the genes and molecular mechanisms related to the antimicrobial effect of BA in Escherichia coli. The Keio collection of E. coli was used to screen 3985 single-gene knockout strains in order to identify mutant strains that were sensitive or hypersensitive to BA at certain concentrations. The mutant strains were exposed to different concentrations of BA ranging from 0 to 120 mM in LB media. Through genome-wide screens, 92 mutants were identified that were relatively sensitive to BA at least at one concentration tested. The related biological processes in the particular cellular system were listed. This study demonstrates that intrinsic BA resistance is the result of various mechanisms acting together. Additionally, we identified eighteen out of ninety-two mutant strains (Delta_aceF, aroK, cheZ, dinJ, galS, garP, glxK, nohA, talB, torR, trmU, trpR, yddE, yfeS, ygaV, ylaC, yoaC, yohN) that exhibited sensitivity using other methods. To increase sensitivity to BA, we constructed double and triple knockout mutants of the selected sensitive mutants. In certain instances, engineered double and triple mutants exhibited significantly amplified effects. Overall, our analysis of these findings offers further understanding of the mechanisms behind BA toxicity and intrinsic resistance in E. coli.</p>\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502571/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s12011-024-04129-0\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12011-024-04129-0","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

硼酸(BA)具有抗菌特性,可用于抗击包括肠杆菌在内的细菌感染。然而,人们对硼酸的分子机制和细胞反应仍一无所知。这项基因组学研究旨在为大肠杆菌中与 BA 的抗菌作用有关的基因和分子机制提供新的信息。研究人员利用庆应义塾大学收集的大肠杆菌筛选了 3985 株单个基因敲除菌株,以确定在特定浓度下对 BA 敏感或不敏感的突变菌株。突变菌株在 LB 培养基中暴露于 0 至 120 mM 不同浓度的 BA。通过全基因组筛选,确定了 92 个突变体,这些突变体至少在一个测试浓度下对 BA 相对敏感。列出了特定细胞系统中的相关生物过程。这项研究表明,BA 的内在抗性是各种机制共同作用的结果。此外,我们还从 92 个突变菌株(Delta_aceF、aroK、cheZ、dinJ、galS、garP、glxK、nohA、talB、torR、trmU、trpR、yddE、yfeS、ygaV、ylaC、yoaC、yohN)中发现了 18 个使用其他方法表现出敏感性的菌株。为了提高对 BA 的敏感性,我们构建了所选敏感突变体的双基因敲除突变体和三基因敲除突变体。在某些情况下,设计的双突变体和三突变体表现出明显的放大效应。总之,我们对这些发现的分析有助于进一步了解大肠杆菌中 BA 毒性和内在抗性背后的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Genome-Wide Screens Identify Genes Responsible for Intrinsic Boric Acid Resistance in Escherichia coli.

Boric acid (BA) has antimicrobial properties and is used to combat bacterial infections, including Enterobacteria. However, the molecular mechanisms and cellular responses to BA are still unknown. This genomics study aims to provide new information on the genes and molecular mechanisms related to the antimicrobial effect of BA in Escherichia coli. The Keio collection of E. coli was used to screen 3985 single-gene knockout strains in order to identify mutant strains that were sensitive or hypersensitive to BA at certain concentrations. The mutant strains were exposed to different concentrations of BA ranging from 0 to 120 mM in LB media. Through genome-wide screens, 92 mutants were identified that were relatively sensitive to BA at least at one concentration tested. The related biological processes in the particular cellular system were listed. This study demonstrates that intrinsic BA resistance is the result of various mechanisms acting together. Additionally, we identified eighteen out of ninety-two mutant strains (Delta_aceF, aroK, cheZ, dinJ, galS, garP, glxK, nohA, talB, torR, trmU, trpR, yddE, yfeS, ygaV, ylaC, yoaC, yohN) that exhibited sensitivity using other methods. To increase sensitivity to BA, we constructed double and triple knockout mutants of the selected sensitive mutants. In certain instances, engineered double and triple mutants exhibited significantly amplified effects. Overall, our analysis of these findings offers further understanding of the mechanisms behind BA toxicity and intrinsic resistance in E. coli.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1