利用 PDMM 实现线性相等和不相等约束的分布式优化

IF 3 3区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Signal and Information Processing over Networks Pub Date : 2024-03-11 DOI:10.1109/TSIPN.2024.3375597
Richard Heusdens;Guoqiang Zhang
{"title":"利用 PDMM 实现线性相等和不相等约束的分布式优化","authors":"Richard Heusdens;Guoqiang Zhang","doi":"10.1109/TSIPN.2024.3375597","DOIUrl":null,"url":null,"abstract":"In this article, we consider the problem of distributed optimisation of a separable convex cost function over a graph, where every edge and node in the graph could carry both linear equality and/or inequality constraints. We show how to modify the primal-dual method of multipliers (PDMM), originally designed for linear equality constraints, such that it can handle inequality constraints as well. The proposed algorithm does not need any slack variables, which is similar to the recent work (He et al., 2023) which extends the alternating direction method of multipliers (ADMM) for addressing decomposable optimisation with linear equality and inequality constraints. Using convex analysis, monotone operator theory and fixed-point theory, we show how to derive the update equations of the modified PDMM algorithm by applying Peaceman-Rachford splitting to the monotonic inclusion related to the lifted dual problem. To incorporate the inequality constraints, we impose a non-negativity constraint on the associated dual variables. This additional constraint results in the introduction of a reflection operator to model the data exchange in the network, instead of a permutation operator as derived for equality constraint PDMM. Convergence for both synchronous and stochastic update schemes of PDMM are provided. The latter includes asynchronous update schemes and update schemes with transmission losses. Experiments show that PDMM converges notably faster than extended ADMM of (He et al., 2023).","PeriodicalId":56268,"journal":{"name":"IEEE Transactions on Signal and Information Processing over Networks","volume":"10 ","pages":"294-306"},"PeriodicalIF":3.0000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Optimisation With Linear Equality and Inequality Constraints Using PDMM\",\"authors\":\"Richard Heusdens;Guoqiang Zhang\",\"doi\":\"10.1109/TSIPN.2024.3375597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we consider the problem of distributed optimisation of a separable convex cost function over a graph, where every edge and node in the graph could carry both linear equality and/or inequality constraints. We show how to modify the primal-dual method of multipliers (PDMM), originally designed for linear equality constraints, such that it can handle inequality constraints as well. The proposed algorithm does not need any slack variables, which is similar to the recent work (He et al., 2023) which extends the alternating direction method of multipliers (ADMM) for addressing decomposable optimisation with linear equality and inequality constraints. Using convex analysis, monotone operator theory and fixed-point theory, we show how to derive the update equations of the modified PDMM algorithm by applying Peaceman-Rachford splitting to the monotonic inclusion related to the lifted dual problem. To incorporate the inequality constraints, we impose a non-negativity constraint on the associated dual variables. This additional constraint results in the introduction of a reflection operator to model the data exchange in the network, instead of a permutation operator as derived for equality constraint PDMM. Convergence for both synchronous and stochastic update schemes of PDMM are provided. The latter includes asynchronous update schemes and update schemes with transmission losses. Experiments show that PDMM converges notably faster than extended ADMM of (He et al., 2023).\",\"PeriodicalId\":56268,\"journal\":{\"name\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"volume\":\"10 \",\"pages\":\"294-306\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal and Information Processing over Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10465663/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal and Information Processing over Networks","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10465663/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们考虑的是图形上可分离凸成本函数的分布式优化问题,其中图形中的每条边和节点都可能带有线性相等和/或不相等约束。我们展示了如何修改最初为线性相等约束而设计的初等二乘法(PDMM),使其也能处理不等式约束。所提出的算法不需要任何松弛变量,这与最近的工作(He 等人,2023 年)相似,后者扩展了交替方向乘法(ADMM),以解决具有线性相等和不相等约束的可分解优化问题。利用凸分析、单调算子理论和定点理论,我们展示了如何通过将 Peaceman-Rachford 分裂应用于与提升对偶问题相关的单调包含,推导出改进 PDMM 算法的更新方程。为了纳入不等式约束,我们对相关对偶变量施加了非负约束。这一额外的约束导致引入了一个反射算子来模拟网络中的数据交换,而不是像等式约束 PDMM 所导出的置换算子。本文提供了 PDMM 同步和随机更新方案的收敛性。后者包括异步更新方案和有传输损失的更新方案。实验表明,PDMM 的收敛速度明显快于(He et al.)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed Optimisation With Linear Equality and Inequality Constraints Using PDMM
In this article, we consider the problem of distributed optimisation of a separable convex cost function over a graph, where every edge and node in the graph could carry both linear equality and/or inequality constraints. We show how to modify the primal-dual method of multipliers (PDMM), originally designed for linear equality constraints, such that it can handle inequality constraints as well. The proposed algorithm does not need any slack variables, which is similar to the recent work (He et al., 2023) which extends the alternating direction method of multipliers (ADMM) for addressing decomposable optimisation with linear equality and inequality constraints. Using convex analysis, monotone operator theory and fixed-point theory, we show how to derive the update equations of the modified PDMM algorithm by applying Peaceman-Rachford splitting to the monotonic inclusion related to the lifted dual problem. To incorporate the inequality constraints, we impose a non-negativity constraint on the associated dual variables. This additional constraint results in the introduction of a reflection operator to model the data exchange in the network, instead of a permutation operator as derived for equality constraint PDMM. Convergence for both synchronous and stochastic update schemes of PDMM are provided. The latter includes asynchronous update schemes and update schemes with transmission losses. Experiments show that PDMM converges notably faster than extended ADMM of (He et al., 2023).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Signal and Information Processing over Networks
IEEE Transactions on Signal and Information Processing over Networks Computer Science-Computer Networks and Communications
CiteScore
5.80
自引率
12.50%
发文量
56
期刊介绍: The IEEE Transactions on Signal and Information Processing over Networks publishes high-quality papers that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to processing of signals and information (data) defined over networks, potentially dynamically varying. In signal processing over networks, the topology of the network may define structural relationships in the data, or may constrain processing of the data. Topics include distributed algorithms for filtering, detection, estimation, adaptation and learning, model selection, data fusion, and diffusion or evolution of information over such networks, and applications of distributed signal processing.
期刊最新文献
Reinforcement Learning-Based Event-Triggered Constrained Containment Control for Perturbed Multiagent Systems Finite-Time Performance Mask Function-Based Distributed Privacy-Preserving Consensus: Case Study on Optimal Dispatch of Energy System Discrete-Time Controllability of Cartesian Product Networks Generalized Simplicial Attention Neural Networks A Continuous-Time Algorithm for Distributed Optimization With Nonuniform Time-Delay Under Switching and Unbalanced Digraphs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1