多模态纵向成像数据在动态预测心血管和肾脏疾病方面的实用性:CARDIA 研究。

Frontiers in radiology Pub Date : 2024-02-27 eCollection Date: 2024-01-01 DOI:10.3389/fradi.2024.1269023
Hieu Nguyen, Henrique D Vasconcellos, Kimberley Keck, Jeffrey Carr, Lenore J Launer, Eliseo Guallar, João A C Lima, Bharath Ambale-Venkatesh
{"title":"多模态纵向成像数据在动态预测心血管和肾脏疾病方面的实用性:CARDIA 研究。","authors":"Hieu Nguyen, Henrique D Vasconcellos, Kimberley Keck, Jeffrey Carr, Lenore J Launer, Eliseo Guallar, João A C Lima, Bharath Ambale-Venkatesh","doi":"10.3389/fradi.2024.1269023","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Medical examinations contain repeatedly measured data from multiple visits, including imaging variables collected from different modalities. However, the utility of such data for the prediction of time-to-event is unknown, and only a fraction of the data is typically used for risk prediction. We hypothesized that multimodal longitudinal imaging data could improve dynamic disease prognosis of cardiovascular and renal disease (CVRD).</p><p><strong>Methods: </strong>In a multi-centered cohort of 5,114 CARDIA participants, we included 166 longitudinal imaging variables from five imaging modalities: Echocardiography (Echo), Cardiac and Abdominal Computed Tomography (CT), Dual-Energy x-ray Absorptiometry (DEXA), Brain Magnetic Resonance Imaging (MRI) collected from young adulthood to mid-life over 30 years (1985-2016) to perform dynamic survival analysis of CVRD events using machine learning dynamic survival analysis (Dynamic-DeepHit, LTRCforest, and Extended Cox for Time-varying Covariates). Risk probabilities were continuously updated as new data were collected. Model performance was assessed using integrated AUC and C-index and compared to traditional risk factors.</p><p><strong>Results: </strong>Longitudinal imaging data, even when being irregularly collected with high missing rates, improved CVRD dynamic prediction (0.03 in integrated AUC, up to 0.05 in C-index compared to traditional risk factors; best model's C-index = 0.80-0.83 up to 20 years from baseline) from young adulthood followed up to midlife. Among imaging variables, Echo and CT variables contributed significantly to improved risk estimation. Echo measured in early adulthood predicted midlife CVRD risks almost as well as Echo measured 10-15 years later (0.01 C-index difference). The most recent CT exam provided the most accurate prediction for short-term risk estimation. Brain MRI markers provided additional information from cardiac Echo and CT variables that led to a slightly improved prediction.</p><p><strong>Conclusions: </strong>Longitudinal multimodal imaging data readily collected from follow-up exams can improve CVRD dynamic prediction. Echocardiography measured early can provide a good long-term risk estimation, while CT/calcium scoring variables carry atherosclerotic signatures that benefit more immediate risk assessment starting in middle-age.</p>","PeriodicalId":73101,"journal":{"name":"Frontiers in radiology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10927728/pdf/","citationCount":"0","resultStr":"{\"title\":\"Utility of multimodal longitudinal imaging data for dynamic prediction of cardiovascular and renal disease: the CARDIA study.\",\"authors\":\"Hieu Nguyen, Henrique D Vasconcellos, Kimberley Keck, Jeffrey Carr, Lenore J Launer, Eliseo Guallar, João A C Lima, Bharath Ambale-Venkatesh\",\"doi\":\"10.3389/fradi.2024.1269023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Medical examinations contain repeatedly measured data from multiple visits, including imaging variables collected from different modalities. However, the utility of such data for the prediction of time-to-event is unknown, and only a fraction of the data is typically used for risk prediction. We hypothesized that multimodal longitudinal imaging data could improve dynamic disease prognosis of cardiovascular and renal disease (CVRD).</p><p><strong>Methods: </strong>In a multi-centered cohort of 5,114 CARDIA participants, we included 166 longitudinal imaging variables from five imaging modalities: Echocardiography (Echo), Cardiac and Abdominal Computed Tomography (CT), Dual-Energy x-ray Absorptiometry (DEXA), Brain Magnetic Resonance Imaging (MRI) collected from young adulthood to mid-life over 30 years (1985-2016) to perform dynamic survival analysis of CVRD events using machine learning dynamic survival analysis (Dynamic-DeepHit, LTRCforest, and Extended Cox for Time-varying Covariates). Risk probabilities were continuously updated as new data were collected. Model performance was assessed using integrated AUC and C-index and compared to traditional risk factors.</p><p><strong>Results: </strong>Longitudinal imaging data, even when being irregularly collected with high missing rates, improved CVRD dynamic prediction (0.03 in integrated AUC, up to 0.05 in C-index compared to traditional risk factors; best model's C-index = 0.80-0.83 up to 20 years from baseline) from young adulthood followed up to midlife. Among imaging variables, Echo and CT variables contributed significantly to improved risk estimation. Echo measured in early adulthood predicted midlife CVRD risks almost as well as Echo measured 10-15 years later (0.01 C-index difference). The most recent CT exam provided the most accurate prediction for short-term risk estimation. Brain MRI markers provided additional information from cardiac Echo and CT variables that led to a slightly improved prediction.</p><p><strong>Conclusions: </strong>Longitudinal multimodal imaging data readily collected from follow-up exams can improve CVRD dynamic prediction. Echocardiography measured early can provide a good long-term risk estimation, while CT/calcium scoring variables carry atherosclerotic signatures that benefit more immediate risk assessment starting in middle-age.</p>\",\"PeriodicalId\":73101,\"journal\":{\"name\":\"Frontiers in radiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10927728/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in radiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fradi.2024.1269023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fradi.2024.1269023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:医疗检查包含多次就诊的重复测量数据,包括从不同模式收集的成像变量。然而,这些数据对事件发生时间的预测作用尚不清楚,通常只有一小部分数据用于风险预测。我们假设多模态纵向成像数据可以改善心血管和肾脏疾病(CVRD)的动态疾病预后:在由 5114 名 CARDIA 参与者组成的多中心队列中,我们纳入了来自五种成像模式的 166 个纵向成像变量:我们采用机器学习动态生存分析(Dynamic-DeepHit、LTRCforest 和 Extended Cox for Time-varying Covariates)对 CVRD 事件进行动态生存分析。随着新数据的收集,风险概率不断更新。使用综合 AUC 和 C 指数评估模型性能,并与传统风险因素进行比较:结果:纵向成像数据,即使是不规则收集且缺失率较高的数据,也能改善从青年期随访到中年期的CVRD动态预测(与传统风险因素相比,综合AUC为0.03,C指数最高为0.05;最佳模型的C指数=0.80-0.83,从基线算起最长可达20年)。在成像变量中,Echo 和 CT 变量对改善风险估计有显著作用。成年早期测量的回波对中年CVRD风险的预测几乎与10-15年后测量的回波相同(C指数差异为0.01)。最新的 CT 检查为短期风险评估提供了最准确的预测。脑磁共振成像标记提供了心脏回波和CT变量的额外信息,使预测结果略有改善:结论:从随访检查中随时收集的纵向多模态成像数据可以改善 CVRD 动态预测。早期测量的超声心动图可提供良好的长期风险评估,而CT/钙评分变量则带有动脉粥样硬化特征,有利于从中年开始进行更直接的风险评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Utility of multimodal longitudinal imaging data for dynamic prediction of cardiovascular and renal disease: the CARDIA study.

Background: Medical examinations contain repeatedly measured data from multiple visits, including imaging variables collected from different modalities. However, the utility of such data for the prediction of time-to-event is unknown, and only a fraction of the data is typically used for risk prediction. We hypothesized that multimodal longitudinal imaging data could improve dynamic disease prognosis of cardiovascular and renal disease (CVRD).

Methods: In a multi-centered cohort of 5,114 CARDIA participants, we included 166 longitudinal imaging variables from five imaging modalities: Echocardiography (Echo), Cardiac and Abdominal Computed Tomography (CT), Dual-Energy x-ray Absorptiometry (DEXA), Brain Magnetic Resonance Imaging (MRI) collected from young adulthood to mid-life over 30 years (1985-2016) to perform dynamic survival analysis of CVRD events using machine learning dynamic survival analysis (Dynamic-DeepHit, LTRCforest, and Extended Cox for Time-varying Covariates). Risk probabilities were continuously updated as new data were collected. Model performance was assessed using integrated AUC and C-index and compared to traditional risk factors.

Results: Longitudinal imaging data, even when being irregularly collected with high missing rates, improved CVRD dynamic prediction (0.03 in integrated AUC, up to 0.05 in C-index compared to traditional risk factors; best model's C-index = 0.80-0.83 up to 20 years from baseline) from young adulthood followed up to midlife. Among imaging variables, Echo and CT variables contributed significantly to improved risk estimation. Echo measured in early adulthood predicted midlife CVRD risks almost as well as Echo measured 10-15 years later (0.01 C-index difference). The most recent CT exam provided the most accurate prediction for short-term risk estimation. Brain MRI markers provided additional information from cardiac Echo and CT variables that led to a slightly improved prediction.

Conclusions: Longitudinal multimodal imaging data readily collected from follow-up exams can improve CVRD dynamic prediction. Echocardiography measured early can provide a good long-term risk estimation, while CT/calcium scoring variables carry atherosclerotic signatures that benefit more immediate risk assessment starting in middle-age.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
CT perfusion imaging in aneurysmal subarachnoid hemorrhage. State of the art. Seven-tesla magnetic resonance imaging of the nervus terminalis, olfactory tracts, and olfactory bulbs in COVID-19 patients with anosmia and hypogeusia. Intranodal lymphangiography combined with foam sclerotherapy embolization of thoracic duct in the treatment of postoperative chylous leakage for thyroid carcinoma: a case report and review. Photon-counting CT for forensic death investigations-a glance into the future of virtual autopsy. Artificial intelligence and machine learning applications for the imaging of bone and soft tissue tumors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1